摘要:受限玻尔兹曼机(restricted Boltzmann machine,简称RBM)是一种概率无向图,传统的RBM模型假设隐藏层单元是二值的,二值单元的优势在于计算过程和采样过程相对简单,然而二值化会对基于隐藏层单元的特征提取和数据重构过程带来信息损失.因此,将RBM的可见层单元和隐藏层单元实值化并保持模型训练的有效性,是目前RBM理论研究的重点问题.为了解决这个问题,将二值单元拓展为实值单元,利用实值单元建模数据并提取特征.具体而言,在可见层单元和隐藏层单元之间增加辅助单元,然后将图正则化项引入到能量函数中,基于二值辅助单元和图正则化项,流形上的数据有更高的概率被映射为参数化的截断高斯分布;同时,远离流形的数据有更高的概率被映射为高斯噪声.由此,模型的隐层单元可以被表示为参数化截断高斯分布或高斯噪声的采样实值.该模型称为基于辅助单元的受限玻尔兹曼机(restricted Boltzmann machine with auxiliary units,简称ARBM).在理论上分析了模型的有效性,然后构建了相应的深度模型,并通过实验验证模型在图像重构任务和图像生成任务中的有效性.
Abstract:Restricted Boltzmann machine (RBM) is a probabilistic undirected graph, and most traditional RBM models assume that their hidden layer units are binary. The advantage of binary units is their calculation process and sampling process are relatively simple. However, binarized hidden units may bring information loss to the process of feature extraction and data reconstruction. Therefore, a key research point of RBM theory is to construct real-valued visible layer units and hidden layer units, meanwhile, maintain the effectiveness of model training. In this study, the binary units are extended to real-valued units to model data and extract features. To achieve this, specifically, an auxiliary unit is added between the visible layer and the hidden layer, and then the graph regularization term is introduced into the energy function. Based on the binary auxiliary unit and graph regularization term, the data on the manifold has a higher probability to be mapped as a parameterized truncated Gaussian distribution, simultaneously, the data far from the manifold has a higher probability to be mapped as Gaussian noises. The hidden units can be sampled as real-valued units from the parameterized Gaussian distribution and Gaussian noises. In this study, the resulting RBM based model is called restricted Boltzmann machine with auxiliary units (ARBM). Moreover, the effectiveness of the proposed model is analyzed theoretically. The effectiveness of the model in image reconstruction task and image generation task is verified by experiments.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/6126
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于实值RBM的深度生成网络研究
本站小编 Free考研考试/2022-01-02
相关话题/数据 概率 过程 图像 计算
全委托的公共可验证的外包数据库方案
摘要:为解决可验证外包数据库方案存在的预处理阶段开销较大及不支持公共可验证的问题,提出了一个全委托的公共可验证的外包数据库模型.给出了模型的架构及交互流程,对模型进行了形式化定义,并给出了模型的正确性定义和安全性定义.利用双线性映射及可验证外包模幂运算协议,构建了一个全委托的公共可验证外包数据库方案 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于动态赋权近邻传播的数据增量采样方法
摘要:数据采样是快速提取大规模数据集中有用信息的重要手段,为更好地应对越来越大规模的数据高效处理要求,借助近邻传播算法的优异性能,通过引入分层增量处理和样本点动态赋权策略,实现了一种能够非常有效地平衡处理效率和采样质量的新方法.其中的分层增量处理策略考虑将原始的大规模数据集进行分批处理后再综合;而样 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02功能分发网络:基于容器的智能边缘计算平台
摘要:随着大数据、机器学习等技术的发展,网络流量与任务的计算量也随之快速增长.研究人员提出了内容分发网络(CDN)、边缘计算等平台技术,但CDN只能解决数据存储,而边缘计算存在着难以管理和不能跨集群进行资源调度等问题.容器化技术广泛应用在边缘计算场景中,但目前,边缘计算采取的容器编排策略普遍比较低效 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种基于MDARNet的低照度图像增强方法
摘要:由于低照度环境下所采集的图像存在亮度低、对比度差、出现噪声和色彩失衡等低质问题,严重影响其在图像处理应用中的性能.为了提升低照度图像质量,以获得具有完整结构和细节且自然清晰的图像,结合Retinex理论与卷积神经网络,提出了一种基于MDARNet的低照度图像增强方法,并引入Attention机 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向数据特征的人机物融合服务分派方法
摘要:随着工业互联网的不断发展,大数据和人工智能促成了人机物全面互联.用户使用服务时产生的任务数据量正呈指数级增长,在为线上用户推荐服务满足个性化需求的同时,对于需要通过人机物交互完成的服务,如何整合线上和线下资源,并分派合适的人快速、有效地完成任务,也已成为一个挑战性问题.为了保证服务分派的准确性 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02噪音数据的属性选择算法
摘要:正则化属性选择算法减小噪音数据影响的效果不佳,而且样本空间的局部结构几乎没有被考虑,在将样本映射到属性子空间后,样本之间的联系与原空间不一致,导致数据挖掘算法的效果不能令人满意.提出一个抗噪音属性选择方法,可以有效地解决传统算法的这两个缺陷.该方法首先采用自步学习的训练方式,这不仅能大幅度降低 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02改进的元启发式优化算法及其在图像分割中的应用
摘要:元启发式算法自20世纪60年代提出以后,由于其具有可以有效地减少计算量、提高优化效率等优点而得到了广泛应用.该类算法以模仿自然界中各类运行机制为特点,具有自我调节的特征,解决了诸如梯度法、牛顿法和共轭下降法等这些传统优化算法计算效率低、收敛性差等缺点,在组合优化、生产调度、图像处理等方面均有很 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于阈值动态调整的重复数据删除方案
摘要:云存储已经成为一种主流应用模式.随着用户及存储数据量的增加,云存储提供商采用重复数据删除技术来节省存储空间和资源.现有方案普遍采用统一的流行度阈值对所有数据进行删重处理,没有考虑到不同的数据信息具有不同的隐私程度这一实际问题.提出了一种基于阈值动态调整的重复数据删除方案,确保了上传数据及相关操 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向频繁项集挖掘的本地差分隐私事务数据收集方法
摘要:事务数据常见于各种应用场景中,如购物记录、页面浏览历史等.为了提供更好的服务,服务提供商收集用户数据并进行分析,但收集事务数据会泄露用户的隐私信息.为了解决上述问题,基于压缩的本地差分隐私模型,提出一种事务数据收集方法.首先,定义了一种新的候选项集分值函数;其次,基于该函数,将候选项集的样本空 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向大数据流的分布式索引构建
摘要:大数据流的高效存储与索引是当今数据领域的一大难点.面向带有时间属性的数据流,根据其时间属性,将数据流划分为连续的时间窗口,提出了基于双层B+树的分布式索引结构WB-Index.下层B+树索引基于窗口内流数据构建,索引构建过程结合基于排序的批量构建技术,进一步对时间窗口分片,将数据流接收、分片数 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02