删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一种基于MDARNet的低照度图像增强方法

本站小编 Free考研考试/2022-01-02

摘要:由于低照度环境下所采集的图像存在亮度低、对比度差、出现噪声和色彩失衡等低质问题,严重影响其在图像处理应用中的性能.为了提升低照度图像质量,以获得具有完整结构和细节且自然清晰的图像,结合Retinex理论与卷积神经网络,提出了一种基于MDARNet的低照度图像增强方法,并引入Attention机制模块和密集卷积模块以提升性能.首先,MDARNet利用同时包含二维和一维的3个不同尺度卷积核对图像进行初步特征提取,并用像素注意模块对多尺度特征图进行针对性学习;其次,设计跳跃连接结构对图像进行特征提取,使图像特征被最大限度地利用;最后,用通道注意模块和像素注意模块同时对提取到的特征图进行权重学习和照度估计.实验结果表明:MDARNet能够有效提升低照度图像的亮度、对比度、色彩等;且相较于一些经典算法,该方法在视觉效果及客观评价指标(PSNR,SSIM,MS-SSIM,MSE)能够得到更好的效果.



Abstract:Due to the low-quality problems such as low brightness, poor contrast, noise, and color imbalance, the performance of the images collected in low-illumination environment is seriously affected in the process of image processing applications. The purpose of this paper is to improve the quality of low-illumination images to obtain natural and clear images with complete structure and details. Combining Retinex theory and convolutional neural network, this paper proposes a low-light image enhancement method based on MDARNet, which includes Attention mechanism module and dense convolution module to improve performance. Firstly, MDARNet uses three different scale convolution kernels that contain both two-dimensional kernels and one-dimensional kernels to perform preliminary feature extraction on the image, and the pixel attention module to perform targeted learning on multi-scale feature maps. Secondly, the skip connection structure is designed for feature extraction, so that the features of the image can achieve maximum utilization. Finally, the channel attention module and the pixel attention module are employed to perform weight learning and illumination estimation on the extracted feature maps simultaneously. The experimental results show that MDARNet can effectively improve the brightness, contrast, and color of low-light images. Compared with some classical algorithms, the MDARNet adopted in this thesis can achieve better results in visual effects and objective evaluation (PSNR, SSIM, MS-SSIM, MSE).



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/6112
相关话题/图像 结构 质量 实验 自然

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 改进的元启发式优化算法及其在图像分割中的应用
    摘要:元启发式算法自20世纪60年代提出以后,由于其具有可以有效地减少计算量、提高优化效率等优点而得到了广泛应用.该类算法以模仿自然界中各类运行机制为特点,具有自我调节的特征,解决了诸如梯度法、牛顿法和共轭下降法等这些传统优化算法计算效率低、收敛性差等缺点,在组合优化、生产调度、图像处理等方面均有很 ...
    本站小编 Free考研考试 2022-01-02
  • 使用VGG能量损失的单图像超分辨率重建
    摘要:单幅图像的超分辨率重建(singleimagesuper-resolution,简称SR)是一项重要的图像合成任务.目前,在基于神经网络的SR任务中,常用的损失函数包括基于内容的重构损失和基于生成对抗网络(generativeadversarialnetwork,简称GAN)的对抗损失.但是, ...
    本站小编 Free考研考试 2022-01-02
  • 基于双注意力残差循环单幅图像去雨集成网络
    摘要:降雨会严重降低拍摄图像质量和影响户外视觉任务.由于不同图像中,雨的形状、方向和密度不同,导致单幅图像去雨是一项困难的任务.提出一种新的基于双注意力的残差循环单幅图像去雨集成网络(简称RDARENet).在网络中,因为上下文的信息对于去除雨痕十分重要,所以首先采用多尺度的扩张卷积网络去获得更大的 ...
    本站小编 Free考研考试 2022-01-02
  • 面向图像场景转换的改进型生成对抗网络
    摘要:设计了新的生成器网络、判决器网络以及新的损失函数,用于图像场景转换.首先,生成器网络采用了带跨层连接结构的深度卷积神经网络,其中,多个跨层连接以实现图像结构信息的共享;而判决器网络采用了多尺度全域卷积网络,多尺度判决器可以区分不同尺寸下的真实和生成图像.同时,对于损失函数,该算法借鉴其他算法提 ...
    本站小编 Free考研考试 2022-01-02
  • 面向非确定性的软件质量保障方法与技术专题前言
    摘要:随着互联网、物联网、云计算等新计算平台、新应用模式、及智能化等新软件模式的广泛运用,软件系统内外各种来源的非确定性不断增强.从软件系统内部的不确定性看,并发程序是一类典型的非确定性软件系统.并发程序由于其随机性高的特点,容易导致并发缺陷且难以调试.从软件系统外部的不确定性看,软件所处的网络环境 ...
    本站小编 Free考研考试 2022-01-02
  • 基于事件关系保障识别质量的自适应分析方法
    摘要:目前自适应软件正在为众多领域系统提供着对运行环境的适应能力.如何建立一种能够保障识别质量的自适应分析方法,使之可从运行环境中快速且准确地识别出异常事件,是确保自适应软件长期稳定运行所必须考虑的研究问题之一.当前运行环境的不确定性给该问题的攻关带来两方面的挑战:其一,现有分析方法一般通过预先建立 ...
    本站小编 Free考研考试 2022-01-02
  • 针对复杂用户评论的代码质量属性判断
    摘要:随着开发者社区和代码托管平台成为程序员获取代码的主要途径,针对代码的用户评论数量急剧增加.用户在使用代码后给出的评论中包含多种静态和动态的代码质量属性信息,但是由于用户评论多为复杂句,使得评论中包含的代码质量属性难以判断.针对复杂用户评论的代码质量属性判断将有助于分析用户评论中的代码质量信息, ...
    本站小编 Free考研考试 2022-01-02
  • 基于代码自然性的切片粒度缺陷预测方法
    摘要:软件缺陷预测是软件质量保障领域的一个活跃话题,它可以帮助开发人员发现潜在的缺陷并更好地利用资源.如何为预测系统设计更具判别力的度量元,并兼顾性能与可解释性,一直是人们致力于研究的方向.针对这一挑战,提出了一种基于代码自然性特征的缺陷预测方法——CNDePor.该方法通过正逆双向度量代码并利用质 ...
    本站小编 Free考研考试 2022-01-02
  • 基于深度学习的数字病理图像分割综述与展望
    摘要:数字病理图像分析对于乳腺癌、前列腺癌等良恶性分级诊断具有重要意义,其中,组织基元的形态和目标测量是量化分析的重要依据.然而,由于病理数据多样性和复杂性等新特点,其分割任务面临着特征提取困难、实例分割困难等挑战.人工智能辅助病理量化分析将复杂病理数据转化为可挖掘的图像特征,使得自动提取组织基元的 ...
    本站小编 Free考研考试 2022-01-02
  • 高斯卷积角:用于叶片图像检索的形状描述不变量
    摘要:植物叶片图像的识别是计算机视觉和图像处理技术在生物学和现代农业中的一个重要应用.其挑战性在于植物叶片种类数量巨大,且许多叶片图像具有很大的类间相似性,使得描述叶片图像的类间差异变得非常困难.提出一种称为高斯卷积角的叶片形状描述方法.该方法用高斯函数与叶片轮廓点的左右邻域向量的卷积产生高斯卷积角 ...
    本站小编 Free考研考试 2022-01-02