删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

使用VGG能量损失的单图像超分辨率重建

本站小编 Free考研考试/2022-01-02

摘要:单幅图像的超分辨率重建(single image super-resolution,简称SR)是一项重要的图像合成任务.目前,在基于神经网络的SR任务中,常用的损失函数包括基于内容的重构损失和基于生成对抗网络(generative adversarial network,简称GAN)的对抗损失.但是,基于传统的GAN的超分辨率重建模型(SRGAN)在判别器接收高分辨率图像作为输入时,输出判别信号不稳定.为了缓解这个问题,在SRGAN以及常用的VGG重构损失框架上,设计了一个稳定的基于能量的辅助对抗损失,称为VGG能量损失.该能量损失使用重构损失中的VGG编码部分,针对VGG编码设计相应的解码器,构建一个U-Net自编码结构VGG-UAE,利用VGG-UAE的重构损失表示能量,并使用该能量函数为生成器提供梯度;基于追踪能量函数的思想,VGG-UAE使生成器生成的高分辨率样本追踪真实数据的能量流.实验部分验证了使用VGG能量损失将比使用传统的GAN损失可以生成更有效的高分辨率图像.



Abstract:Single image super-resolution (SR) is an important task in image synthesis. Based on neural nets, the loss function in the SR task commonly contains a content-based reconstruction loss and a generative adversarial network (GAN) based regularization loss. However, due to the instability of GAN training, the generated discriminative signal of a high-resolution image from the GAN loss is not stable in the SRGAN model. In order to alleviate this problem, based on the commonly used VGG reconstruction loss, this study designs a stable energy-based regularization loss, which is called VGG energy loss. The proposed VGG energy loss in this study uses the VGG encoder in the reconstruction loss as an encoder, and designs the corresponding decoder to build a VGG-U-Net auto encoder:VGG-UAE; by using the VGG-UAE as the energy function, which can provide gradients for the generator, the generated high-resolution samples track the energy flow of real data. Experiments verify that a generative model using the proposed VGG energy loss can generate more effective high-resolution images.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/6053
相关话题/图像 设计 信号 数据 网络

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于着色Petri网的HDFS数据一致性建模与分析
    摘要:HDFS分布式文件系统作为ApacheHadoop的核心组件之一,在工业界得到了广泛应用.HDFS采用了多副本机制保证数据的可靠性,但是由于多副本的存在,在节点失效、网络中断、写入失败时可能会导致数据不一致.与传统文件系统相比,HDFS被认为其数据一致性有所降低,但用户并不知道何时会出现不一致 ...
    本站小编 Free考研考试 2022-01-02
  • 基于贝叶斯网络的时间序列因果关系学习
    摘要:贝叶斯网络是研究变量之间因果关系的有力工具,基于贝叶斯网络的因果关系学习包括结构学习与参数学习两部分,其中,结构学习是核心.目前,贝叶斯网络主要用于发现非时间序列数据中所蕴含的因果关系(非时间序列因果关系),从数据中学习得到的也均是一般变量之间的因果关系.针对这些情况,结合时间序列预处理、时间 ...
    本站小编 Free考研考试 2022-01-02
  • 基于细粒度数据的智能手机续航时间预测模型
    摘要:如今,智能手机已成为人们日常生活中重要的组成部分.然而,在智能手机软硬件能力高速发展的同时,智能手机的电池能力却未能取得突破性的进展.这导致电池的续航能力经常会成为用户使用智能手机时的体验瓶颈.为了提高用户使用体验的优良感受,一种可行的方法是为用户提供电池续航时间预测.准确的电池续航时间预测能 ...
    本站小编 Free考研考试 2022-01-02
  • 构建新型高性能与高可用的键值数据库系统
    摘要:近年来,写密集型应用程序越来越普遍.如何有效地处理这种工作负载,是数据库系统领域深入研究的方向之一.写操作开销主要由以下两个方面的因素构成:(1)硬件级别,即写操作引起的I/O,目前无法在短时间内消除这种开销;(2)软件开销,即修改内存数据拷贝以及构造日志记录造成的多次写操作.日志即数据(lo ...
    本站小编 Free考研考试 2022-01-02
  • 医疗大数据隐私保护多关键词范围搜索方案
    摘要:随着医疗信息系统的急速发展,基于医疗云的信息系统将大量电子健康记录(EHRs)存储在医疗云系统中,利用医疗云强大的存储能力和计算能力对EHRs数据进行安全与统一的管理.尽管传统加密机制可以保证医疗数据在半诚实云服务器中的机密性,但对加密后的EHRs数据执行安全、快速、有效的范围搜索,仍是一个有 ...
    本站小编 Free考研考试 2022-01-02
  • 基于双注意力残差循环单幅图像去雨集成网络
    摘要:降雨会严重降低拍摄图像质量和影响户外视觉任务.由于不同图像中,雨的形状、方向和密度不同,导致单幅图像去雨是一项困难的任务.提出一种新的基于双注意力的残差循环单幅图像去雨集成网络(简称RDARENet).在网络中,因为上下文的信息对于去除雨痕十分重要,所以首先采用多尺度的扩张卷积网络去获得更大的 ...
    本站小编 Free考研考试 2022-01-02
  • 领域驱动设计模式的收益与挑战:系统综述
    摘要:背景:近年来,领域驱动设计(domaindrivendesign,简称DDD)作为一种软件设计方法在业界中逐渐流行起来,并形成了若干应用的固有范式,即领域驱动设计模式(domaindrivendesignpattern,简称DDDP).然而,目前软件开发社区却仍然对DDDP在软件项目中的作用缺 ...
    本站小编 Free考研考试 2022-01-02
  • 面向图像场景转换的改进型生成对抗网络
    摘要:设计了新的生成器网络、判决器网络以及新的损失函数,用于图像场景转换.首先,生成器网络采用了带跨层连接结构的深度卷积神经网络,其中,多个跨层连接以实现图像结构信息的共享;而判决器网络采用了多尺度全域卷积网络,多尺度判决器可以区分不同尺寸下的真实和生成图像.同时,对于损失函数,该算法借鉴其他算法提 ...
    本站小编 Free考研考试 2022-01-02
  • 碎片化家谱数据的融合技术
    摘要:家谱数据是典型的碎片化数据,具有海量、多源、异构、自治的特点.通过数据融合技术将互联网中零散分布的家谱数据融合成一个全面、准确的家谱数据库,有利于针对家谱数据进行知识挖掘和推理,从而为用户提供姓氏起源、姓氏变迁和姓氏间关联等隐含信息.在大数据知识工程BigKE模型的基础上,提出了一个结合HAO ...
    本站小编 Free考研考试 2022-01-02
  • 一种高效低能耗移动数据采集与无线充电策略
    摘要:在无线可充电传感器网络(wirelessrechargeablesensornetwork,简称WRSN)中,所面临的一项重要挑战是如何在高效收集传感器节点数据的同时,降低网络整体能量消耗.大多数现有数据收集策略或是不能适应大规模的充电传感器网络,或是没有充分考虑到传感器节点能量补充的问题,这 ...
    本站小编 Free考研考试 2022-01-02