删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于贝叶斯网络的时间序列因果关系学习

本站小编 Free考研考试/2022-01-02

摘要:贝叶斯网络是研究变量之间因果关系的有力工具,基于贝叶斯网络的因果关系学习包括结构学习与参数学习两部分,其中,结构学习是核心.目前,贝叶斯网络主要用于发现非时间序列数据中所蕴含的因果关系(非时间序列因果关系),从数据中学习得到的也均是一般变量之间的因果关系.针对这些情况,结合时间序列预处理、时间序列变量排序、转换数据集构建和局部贪婪打分-搜索等进行时间序列的因果关系学习;再将包括分段在内的时间序列预处理、时间序列段的因果关系结构学习、因果关系结构数据集构建、因果关系变量排序和局部贪婪打分-搜索等相结合,来进行元因果关系(因果关系变量之间的因果关系)学习,从而实现两个层次的时间序列因果关系学习,为进一步的量化因果分析奠定了基础.分别使用模拟、UCI和金融时间序列数据进行实验与分析,实验结果显示,基于贝叶斯网络能够有效地进行时间序列的因果关系和元因果关系学习.



Abstract:Bayesian network is a powerful tool for studying the causal relationship between variables. Causal learning, based on Bayesian network, consists of two parts:structure learning and parameter learning, while structural learning is the core of causal learning. At present, Bayesian network is mainly used to discover the causality in non-time series data (non-time series causality) and what is learned from the data is the causal relationship between general variables. In this study, the causality of time series is learned by time series preconditioning, time series variable sorting, construction of transformation data set, local greedy search-scoring, and so on. Combining the time series preconditioning including segmentation, the structure learning of causal relationship for time series segments, the construction of causality structure data set, the variable sorting of causal relationship, local greedy search-scoring, maximum likelihood parameter estimation, etc., meta causal relationship (used to study the randomness of causal relationship) is established. Thus, two levels of causality learning can be realized, and the foundation is laid for further quantitative causal analysis. Experiments and analyses are carried out by using simulation, UCI, and finance time series, the results verify the validity, reliability, and practicability of learning causal relationship and Meta causality based on Bayesian network.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/6012
相关话题/序列 数据 结构 网络 实验

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于细粒度数据的智能手机续航时间预测模型
    摘要:如今,智能手机已成为人们日常生活中重要的组成部分.然而,在智能手机软硬件能力高速发展的同时,智能手机的电池能力却未能取得突破性的进展.这导致电池的续航能力经常会成为用户使用智能手机时的体验瓶颈.为了提高用户使用体验的优良感受,一种可行的方法是为用户提供电池续航时间预测.准确的电池续航时间预测能 ...
    本站小编 Free考研考试 2022-01-02
  • 构建新型高性能与高可用的键值数据库系统
    摘要:近年来,写密集型应用程序越来越普遍.如何有效地处理这种工作负载,是数据库系统领域深入研究的方向之一.写操作开销主要由以下两个方面的因素构成:(1)硬件级别,即写操作引起的I/O,目前无法在短时间内消除这种开销;(2)软件开销,即修改内存数据拷贝以及构造日志记录造成的多次写操作.日志即数据(lo ...
    本站小编 Free考研考试 2022-01-02
  • 医疗大数据隐私保护多关键词范围搜索方案
    摘要:随着医疗信息系统的急速发展,基于医疗云的信息系统将大量电子健康记录(EHRs)存储在医疗云系统中,利用医疗云强大的存储能力和计算能力对EHRs数据进行安全与统一的管理.尽管传统加密机制可以保证医疗数据在半诚实云服务器中的机密性,但对加密后的EHRs数据执行安全、快速、有效的范围搜索,仍是一个有 ...
    本站小编 Free考研考试 2022-01-02
  • 基于双注意力残差循环单幅图像去雨集成网络
    摘要:降雨会严重降低拍摄图像质量和影响户外视觉任务.由于不同图像中,雨的形状、方向和密度不同,导致单幅图像去雨是一项困难的任务.提出一种新的基于双注意力的残差循环单幅图像去雨集成网络(简称RDARENet).在网络中,因为上下文的信息对于去除雨痕十分重要,所以首先采用多尺度的扩张卷积网络去获得更大的 ...
    本站小编 Free考研考试 2022-01-02
  • 面向图像场景转换的改进型生成对抗网络
    摘要:设计了新的生成器网络、判决器网络以及新的损失函数,用于图像场景转换.首先,生成器网络采用了带跨层连接结构的深度卷积神经网络,其中,多个跨层连接以实现图像结构信息的共享;而判决器网络采用了多尺度全域卷积网络,多尺度判决器可以区分不同尺寸下的真实和生成图像.同时,对于损失函数,该算法借鉴其他算法提 ...
    本站小编 Free考研考试 2022-01-02
  • 碎片化家谱数据的融合技术
    摘要:家谱数据是典型的碎片化数据,具有海量、多源、异构、自治的特点.通过数据融合技术将互联网中零散分布的家谱数据融合成一个全面、准确的家谱数据库,有利于针对家谱数据进行知识挖掘和推理,从而为用户提供姓氏起源、姓氏变迁和姓氏间关联等隐含信息.在大数据知识工程BigKE模型的基础上,提出了一个结合HAO ...
    本站小编 Free考研考试 2022-01-02
  • 一种高效低能耗移动数据采集与无线充电策略
    摘要:在无线可充电传感器网络(wirelessrechargeablesensornetwork,简称WRSN)中,所面临的一项重要挑战是如何在高效收集传感器节点数据的同时,降低网络整体能量消耗.大多数现有数据收集策略或是不能适应大规模的充电传感器网络,或是没有充分考虑到传感器节点能量补充的问题,这 ...
    本站小编 Free考研考试 2022-01-02
  • 基于卷积神经网络的低嵌入率空域隐写分析
    摘要:近年来,基于深度学习的空域隐写分析研究在高嵌入率下已经取得了较好的成果,但是对低嵌入率的检测效果还不太理想.因此设计了一种卷积神经网络结构,使用SRM滤波器进行预处理来获取隐写噪声残差,采用3个卷积层并对卷积核大小进行合理设计,通过适当选择批量归一化操作和激活函数来提升网络的性能.实验结果表明 ...
    本站小编 Free考研考试 2022-01-02
  • 一种超低损失的深度神经网络量化压缩方法
    摘要:深度神经网络(deepneuralnetwork,简称DNN)量化是一种高效的模型压缩方法,使用少量位宽表示模型计算过程中的参数和中间结果数据.数据位宽会直接影响内存占用、计算效率和能耗.以往的模型量化研究缺乏有效的定量分析,这导致量化损失难以预测.提出了一种超低损失的DNN量化方法(ultr ...
    本站小编 Free考研考试 2022-01-02
  • 基于关联记忆网络的中文细粒度命名实体识别
    摘要:细粒度命名实体识别是对文本中的实体进行定位,并将其分类至预定义的细粒度类别中.目前,中文细粒度命名实体识别仅使用预训练语言模型对句子中的字符进行上下文编码,并没有考虑到类别的标签信息具有区分实体类别的能力.由于预测句子不带有实体标签,使用关联记忆网络来捕获训练集句子的实体标签信息,并将标签信息 ...
    本站小编 Free考研考试 2022-01-02