删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于动态赋权近邻传播的数据增量采样方法

本站小编 Free考研考试/2022-01-02

摘要:数据采样是快速提取大规模数据集中有用信息的重要手段,为更好地应对越来越大规模的数据高效处理要求,借助近邻传播算法的优异性能,通过引入分层增量处理和样本点动态赋权策略,实现了一种能够非常有效地平衡处理效率和采样质量的新方法.其中的分层增量处理策略考虑将原始的大规模数据集进行分批处理后再综合;而样本点动态赋权则考虑在近邻传播过程中对样本点进行合理的动态赋权,以获得采样的数据空间上更好的全局一致性.实验中,分别使用人工数据集、UCI标准数据集和图像数据集进行性能分析,结果表明:新方法与现有相关方法在采样划分质量上可达到同等水平,而计算效率则可实现大幅提升.进一步将新方法应用于深度学习的数据增强任务中,相应的实验结果表明:在原始数据增强方法上结合进高效增量采样处理后,在保持总训练数据集规模的情况下,所获得的模型性能可实现显著的提升.



Abstract:Data sampling is an important manner to efficiently extract useful information from original huge datasets. In order to fit with the requirements of efficiently dealing with more and more large-scale data, a novel incremental data sampling method originated from affinity propagation method is proposed, in which two integrated algorithm strategies including hierarchical incremental processing and the dynamic weighting of data samples are introduced. The proposed method mainly can balance the computational efficiency and sampling quality very well. For hierarchical incremental processing strategy, it firstly samples data items in batches and then composites samples by hierarchical way. For dynamic weighting of data samples strategy, it dynamically re-weights the preference to retain better global consistency of possible samples on data space in the incremental sampling procedure. In the experiments, artificial datasets, UCI datasets, and image datasets are used to analyze the sampling performance. The experimental results with several compared algorithms indicate that, the proposed method can gain similar sampling quality but with notably higher computational efficiency especially for more large-scale datasets. This study further applies the new method to data augmentation task in deep learning, and the corresponding experimental results show that the proposed method performs excellently. Concretely, if basic training dataset are processed by sampling enhancement with the proposed new method, the trained model performance using similar number of training samples can be significantly improved compared to traditional data enhancement strategies.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/6118
相关话题/数据 质量 传播 实验 图像

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 全委托的公共可验证的外包数据库方案
    摘要:为解决可验证外包数据库方案存在的预处理阶段开销较大及不支持公共可验证的问题,提出了一个全委托的公共可验证的外包数据库模型.给出了模型的架构及交互流程,对模型进行了形式化定义,并给出了模型的正确性定义和安全性定义.利用双线性映射及可验证外包模幂运算协议,构建了一个全委托的公共可验证外包数据库方案 ...
    本站小编 Free考研考试 2022-01-02
  • 一种基于MDARNet的低照度图像增强方法
    摘要:由于低照度环境下所采集的图像存在亮度低、对比度差、出现噪声和色彩失衡等低质问题,严重影响其在图像处理应用中的性能.为了提升低照度图像质量,以获得具有完整结构和细节且自然清晰的图像,结合Retinex理论与卷积神经网络,提出了一种基于MDARNet的低照度图像增强方法,并引入Attention机 ...
    本站小编 Free考研考试 2022-01-02
  • 面向数据特征的人机物融合服务分派方法
    摘要:随着工业互联网的不断发展,大数据和人工智能促成了人机物全面互联.用户使用服务时产生的任务数据量正呈指数级增长,在为线上用户推荐服务满足个性化需求的同时,对于需要通过人机物交互完成的服务,如何整合线上和线下资源,并分派合适的人快速、有效地完成任务,也已成为一个挑战性问题.为了保证服务分派的准确性 ...
    本站小编 Free考研考试 2022-01-02
  • 噪音数据的属性选择算法
    摘要:正则化属性选择算法减小噪音数据影响的效果不佳,而且样本空间的局部结构几乎没有被考虑,在将样本映射到属性子空间后,样本之间的联系与原空间不一致,导致数据挖掘算法的效果不能令人满意.提出一个抗噪音属性选择方法,可以有效地解决传统算法的这两个缺陷.该方法首先采用自步学习的训练方式,这不仅能大幅度降低 ...
    本站小编 Free考研考试 2022-01-02
  • 改进的元启发式优化算法及其在图像分割中的应用
    摘要:元启发式算法自20世纪60年代提出以后,由于其具有可以有效地减少计算量、提高优化效率等优点而得到了广泛应用.该类算法以模仿自然界中各类运行机制为特点,具有自我调节的特征,解决了诸如梯度法、牛顿法和共轭下降法等这些传统优化算法计算效率低、收敛性差等缺点,在组合优化、生产调度、图像处理等方面均有很 ...
    本站小编 Free考研考试 2022-01-02
  • 基于阈值动态调整的重复数据删除方案
    摘要:云存储已经成为一种主流应用模式.随着用户及存储数据量的增加,云存储提供商采用重复数据删除技术来节省存储空间和资源.现有方案普遍采用统一的流行度阈值对所有数据进行删重处理,没有考虑到不同的数据信息具有不同的隐私程度这一实际问题.提出了一种基于阈值动态调整的重复数据删除方案,确保了上传数据及相关操 ...
    本站小编 Free考研考试 2022-01-02
  • 面向频繁项集挖掘的本地差分隐私事务数据收集方法
    摘要:事务数据常见于各种应用场景中,如购物记录、页面浏览历史等.为了提供更好的服务,服务提供商收集用户数据并进行分析,但收集事务数据会泄露用户的隐私信息.为了解决上述问题,基于压缩的本地差分隐私模型,提出一种事务数据收集方法.首先,定义了一种新的候选项集分值函数;其次,基于该函数,将候选项集的样本空 ...
    本站小编 Free考研考试 2022-01-02
  • 面向大数据流的分布式索引构建
    摘要:大数据流的高效存储与索引是当今数据领域的一大难点.面向带有时间属性的数据流,根据其时间属性,将数据流划分为连续的时间窗口,提出了基于双层B+树的分布式索引结构WB-Index.下层B+树索引基于窗口内流数据构建,索引构建过程结合基于排序的批量构建技术,进一步对时间窗口分片,将数据流接收、分片数 ...
    本站小编 Free考研考试 2022-01-02
  • 使用VGG能量损失的单图像超分辨率重建
    摘要:单幅图像的超分辨率重建(singleimagesuper-resolution,简称SR)是一项重要的图像合成任务.目前,在基于神经网络的SR任务中,常用的损失函数包括基于内容的重构损失和基于生成对抗网络(generativeadversarialnetwork,简称GAN)的对抗损失.但是, ...
    本站小编 Free考研考试 2022-01-02
  • 基于着色Petri网的HDFS数据一致性建模与分析
    摘要:HDFS分布式文件系统作为ApacheHadoop的核心组件之一,在工业界得到了广泛应用.HDFS采用了多副本机制保证数据的可靠性,但是由于多副本的存在,在节点失效、网络中断、写入失败时可能会导致数据不一致.与传统文件系统相比,HDFS被认为其数据一致性有所降低,但用户并不知道何时会出现不一致 ...
    本站小编 Free考研考试 2022-01-02