删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于1D-CNN联合特征提取的轴承健康监测与故障诊断

本站小编 Free考研考试/2022-01-02

摘要:针对特定机械设备构建数据驱动的故障诊断模型缺乏泛化能力,而轴承作为各型机械的共有核心部件,对其健康状态的判定对不同机械的衍生故障分析具有普适性意义.提出了一种基于1D-CNN(one-dimensional convolution neural network)联合特征提取的轴承健康监测与故障诊断算法.算法首先对轴承原始振动信号进行分区裁剪,裁剪获得的信号分区作为特征学习空间并行输入1D-CNN中,以提取各工况下的代表性特征域.为了避免对故障重叠信息的处理,优先使用对健康状态敏感的特征域构建轴承健康状态判别模型,若健康状态判别模型识别轴承未处于健康状态,特征域将与原始信号联合重构,通过耦合自动编码器开展故障模式判定.使用凯斯西储大学(Case Western Reserve University)的轴承数据开展实验,结果表明,该算法继承了深层学习模型的准确性和鲁棒性,具有较高的故障诊断精度和较低的诊断时延.



Abstract:Data-driven fault diagnosis models for specific mechanical equipment lack generalization capabilities. As a core component of various types of machinery, the health status of bearings makes sense in analyzing derivative failures of different machinery. This study proposes a bearing health monitoring and fault diagnosis algorithm based on 1D-CNN (one-dimensional convolution neural network) joint feature extraction. The algorithm first partitions the original vibration signal of the bearing in segmentations. The signal segmentations are used as feature learning spaces and input into the 1D-CNN in parallel to extract the representative feature domain under each working condition. To avoid processing overlapping information generated by faults, a bearing health status discriminant model is built in advance based on the feature domain sensitive to health status. If the health model recognizes that the bearing is not in a healthy state, the feature domain will be reconstructed jointly with the original signal and coupled with an automatic encoder for failure mode classification. Bearing data provided by Case Western Reserve University are used to carry out experiments. Experimental results demonstrate that the proposed algorithm inherits the accuracy and robustness of the deep learning model, and has higher diagnosis accuracy and lower time delay.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/6188
相关话题/健康 信号 机械 数据 空间

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • Storm平台下的线程重分配与数据迁移节能策略
    摘要:作为流式大数据计算的主要平台之一,Storm在设计过程中由于缺乏节能的考虑,导致其存在高能耗与低效率的问题.传统的节能策略并未考虑Storm的性能约束,可能会对集群的实时性造成影响.针对这一问题,设计了资源约束模型、最优线程重分配模型以及数据迁移模型.进一步提出了Storm平台下的线程重分配与 ...
    本站小编 Free考研考试 2022-01-02
  • 高精度的大规模程序数据竞争检测方法
    摘要:随着技术的不断发展,软件系统的非确定性(uncertainty)不断增强,数据竞争是并发系统这一类典型的非确定性软件系统中常见的缺陷.尽管数据竞争静态检测近年来取得了巨大进展,但其面临的重要问题仍然存在.先前的静态技术要么以分析精度为代价达到高扩展性,要么由于高精度分析而导致可扩展性问题.提出 ...
    本站小编 Free考研考试 2022-01-02
  • 基于分支标记的数据流模型的代码生成方法
    摘要:模型驱动开发以其低错误率、易仿真、易验证的特点,在嵌入式软件开发中被广泛应用.近年来,基于模型的嵌入式软件开发方法及相应工具也在逐渐发展和完善.数据流模型是各种建模工具中使用最为频繁的语义模型,然而,各种工具对于数据流模型的代码生成能力却参差不齐,特别是对于数据分支组件的支持,当前主流的建模工 ...
    本站小编 Free考研考试 2022-01-02
  • Petri网的反向展开及其在程序数据竞争检测的应用
    摘要:展开技术借助分支进程可在一定程度上缓解Petri网性质分析中的状态爆炸问题.但展开网中仍然包含了系统的所有状态信息.某些应用问题仅需对系统特定状态的可覆盖性进行判定,以此为目标,有望缩减网系统展开的规模.为此,针对安全Petri网的可覆盖性判定问题提出了一种目标导向的反向展开算法,结合启发式技 ...
    本站小编 Free考研考试 2022-01-02
  • 面向数据流的ROS2数据分发服务形式建模与分析
    摘要:机器人操作系统(robotoperatingsystem,简称ROS)是一种开源的元操作系统,能够在异种计算簇上提供基于消息机制的结构化通信层.为改善ROS1中存在的数据分发实时性、可靠性问题,ROS2提出了面向数据流的数据分发服务机制.采用概率模型检验的方法,分析、验证ROS2系统数据分发机 ...
    本站小编 Free考研考试 2022-01-02
  • 基于多源特征空间的微服务可维护性评估
    摘要:软件企业实践将遗留软件系统解耦成基于微服务架构的系统,以提高软件的可维护性,达到较快市场交付.评估微服务开发阶段的代码可维护性是一个关键问题,其面临数据多源化、可维护性关注点多样化的难点.通过分析源代码、代码运行轨迹、代码修订历史,提出一种多源特征空间模型以统一表示软件多源数据,并基于该模型, ...
    本站小编 Free考研考试 2022-01-02
  • 一种监控系统的链路跟踪型日志数据的存储设计
    摘要:随着软件系统越来越复杂化和分布化,为系统提供具有完善功能的监控服务显得越来越重要.APM(applicationperformancemanagement)系统通过采集软件系统运行时的各项指标数据来分析软件的运行状态,例如CPU、内存使用率、垃圾回收的耗时、QPS等指标.此外,APM系统也会在 ...
    本站小编 Free考研考试 2022-01-02
  • 一种优化的数据流驱动的微服务化拆分方法
    摘要:近年来,微服务架构已经成为软件工程领域比较流行的架构风格,其天然支持DevOps和持续交付以及可伸缩性、可扩展性好等特性,驱动着业界实践者纷纷向微服务架构迁移.然而,采用微服务架构也面临诸多挑战,其中最关键的是缺乏自动化、一体化的解决方案来高效支持面向微服务的拆分设计以及候选微服务架构的评估. ...
    本站小编 Free考研考试 2022-01-02
  • 时空轨迹数据驱动的自动驾驶场景元建模方法
    摘要:时空轨迹数据驱动的汽车自动驾驶场景建模,是当前汽车自动驾驶领域中驾驶场景建模、仿真所面临的关键问题,对于提高系统的安全性具有重要的研究意义.近年来,随着时空轨迹数据建模及应用研究的快速发展,时空轨迹数据应用于特定领域建模的研究引起人们的广泛关注.但是,由于时空轨迹数据所反映的现实世界的多元性和 ...
    本站小编 Free考研考试 2022-01-02
  • 区块链赋能的高效物联网数据激励共享方案
    摘要:近年来,随着大量设备不断地加入物联网中,数据共享作为物联网市场的主要驱动因素成为了研究热点.然而,当前的物联网数据共享存在着出于安全顾虑和缺乏激励机制等原因导致用户不愿意参与共享数据的问题.在此背景下,区块链技术为解决用户的信任问题和提供安全的数据存储被引入到物联网数据共享中.然而,在构建基于 ...
    本站小编 Free考研考试 2022-01-02