摘要:污点分析技术是检测Android智能手机隐私数据泄露的有效方法,目前主流的Android应用污点分析工具主要关注分析的精度,常常忽略运行效率的提升.在分析一些复杂应用时,过大的开销可能造成超时或程序崩溃等问题,影响工具的广泛使用.为了减少分析时间、提高效率,提出一种基于污染变量关系图的污点分析方法.该方法定义了污染变量关系图用于描述程序中污染变量及其关系,摒弃了传统数据流分析框架,将污点分析和别名分析进行结合,从程序中抽象出污染变量关系图和潜在污染流,并在控制流图上对潜在污染流进行验证以提高精度.详细描述了基于该方法所实现的工具FastDroid的架构、模块及算法细节.实验使用了3个不同的测试集,分别为DroidBench-2.0,MalGenome以及Google Play上随机下载的1517个应用.实验结果表明:FastDroid在DroidBench-2.0测试集上的查准率和查全率分别达到93.3%和85.8%,比目前主流工具FlowDroid更高,并且在3个测试集上所用的分析时间更少且更稳定.
Abstract:The taint analysis technology is an effective method to detect the privacy data leakage of Android smart phones. However, the state-of-the-art tools of taint analysis for Android applications mainly focus on the accuracy with few of them addressing the importance of the efficiency and time cost. Actually, the high cost may cause problems such as timeouts or program crashes when the tools analyze some complex applications, which block them from wide usage. This study proposes a novel taint analysis approach based on the tainted value graph, which reduces the time cost and improves the efficiency. The tainted value graph is formalized to describe the tainted values and their relationships and the taint analysis and alias analysis are combined together without using the traditional data flow analysis framework. In addition, the taint flows are verified on the control flow graph to improve accuracy. The architecture, modules, and algorithmic details of the proposed tool FastDroid are also described in this paper. The tool is evaluated on three test suites:DroidBench-2.0, MalGenome, and 1517 apps randomly downloaded from Google Play. The experimental results show that, compared with the tool FlowDroid, FastDroid has a higher precision of 93.3% and a higher recall of 85.8% on DroidBench-2.0, and the time cost for analysis is less and more stable on all the test suites.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/6245
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于污染变量关系图的Android应用污点分析工具
本站小编 Free考研考试/2022-01-02
相关话题/污染 测试 程序 实验 数据
面向数据流的ROS2数据分发服务形式建模与分析
摘要:机器人操作系统(robotoperatingsystem,简称ROS)是一种开源的元操作系统,能够在异种计算簇上提供基于消息机制的结构化通信层.为改善ROS1中存在的数据分发实时性、可靠性问题,ROS2提出了面向数据流的数据分发服务机制.采用概率模型检验的方法,分析、验证ROS2系统数据分发机 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向ROS的差分模糊测试方法
摘要:机器人操作系统(robotoperatingsystem,简称ROS)是一种广泛应用于机器人开发的开源系统,它可以为开发者提供硬件抽象、设备驱动、库函数、可视化、消息传递和软件包管理等诸多功能,应用前景广阔.ROS集成了可以实现不同功能的功能包,例如定位绘图、行动规划、感知、模拟等等,但其中可 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种监控系统的链路跟踪型日志数据的存储设计
摘要:随着软件系统越来越复杂化和分布化,为系统提供具有完善功能的监控服务显得越来越重要.APM(applicationperformancemanagement)系统通过采集软件系统运行时的各项指标数据来分析软件的运行状态,例如CPU、内存使用率、垃圾回收的耗时、QPS等指标.此外,APM系统也会在 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02一种优化的数据流驱动的微服务化拆分方法
摘要:近年来,微服务架构已经成为软件工程领域比较流行的架构风格,其天然支持DevOps和持续交付以及可伸缩性、可扩展性好等特性,驱动着业界实践者纷纷向微服务架构迁移.然而,采用微服务架构也面临诸多挑战,其中最关键的是缺乏自动化、一体化的解决方案来高效支持面向微服务的拆分设计以及候选微服务架构的评估. ...中科院软件研究所 本站小编 Free考研考试 2022-01-02程序智能合成技术研究进展
摘要:近年来,随着信息技术快速发展,软件重要性与日俱增,极大地推动了国民经济的发展.然而,由于软件业务形态越来越复杂和需求变化越来越快,软件的开发和维护成本急剧增加,迫切需要探索新的软件开发模式和技术.目前,各行业在软件活动中积累了规模巨大的软件代码和数据,这些软件资产为软件智能化开发建立了数据基础 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02时空轨迹数据驱动的自动驾驶场景元建模方法
摘要:时空轨迹数据驱动的汽车自动驾驶场景建模,是当前汽车自动驾驶领域中驾驶场景建模、仿真所面临的关键问题,对于提高系统的安全性具有重要的研究意义.近年来,随着时空轨迹数据建模及应用研究的快速发展,时空轨迹数据应用于特定领域建模的研究引起人们的广泛关注.但是,由于时空轨迹数据所反映的现实世界的多元性和 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02区块链赋能的高效物联网数据激励共享方案
摘要:近年来,随着大量设备不断地加入物联网中,数据共享作为物联网市场的主要驱动因素成为了研究热点.然而,当前的物联网数据共享存在着出于安全顾虑和缺乏激励机制等原因导致用户不愿意参与共享数据的问题.在此背景下,区块链技术为解决用户的信任问题和提供安全的数据存储被引入到物联网数据共享中.然而,在构建基于 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于深度学习的混合模糊测试方法
摘要:随着软件技术的快速发展,面向领域的软件系统在广泛使用的同时带来了研究与应用上的新挑战.由于领域应用对安全性、可靠性有着很高的要求,而符号执行和模糊测试等技术在保障软件系统的安全性、可靠性方面已经发展了数十年,许多研究和被发现的缺陷表明了它们的有效性.但是,由于两者的优劣各有不同,将这两者相结合 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向神经机器翻译系统的多粒度蜕变测试
摘要:机器翻译是利用计算机将一种自然语言转换成另一种自然语言的任务,是人工智能领域研究的热点问题之一.近年来,随着深度学习的发展,基于序列到序列结构的神经机器翻译模型在多种语言对的翻译任务上都取得了超过统计机器翻译模型的效果,并被广泛应用于商用翻译系统中.虽然商用翻译系统的实际应用效果直观表明了神经 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02支撑人工智能的数据管理与分析技术专刊前言
摘要:近年来,支撑人工智能的数据管理与分析技术正成为大数据和人工智能领域研究的热点问题之一.利用和发展数据管理与分析理论技术,为提升人工智能系统全生命周期的效率和有效性提供基础性支撑,必将进一步促进基于大数据的人工智能技术发展与其在更大范围的推广应用.本专刊聚焦在数据管理与人工智能融合发展的过程中, ...中科院软件研究所 本站小编 Free考研考试 2022-01-02