删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

轨迹表示学习技术研究进展

本站小编 Free考研考试/2022-01-02

摘要:基于地理位置信息的应用和服务的迅速发展,对轨迹数据挖掘提出了新的需求和挑战.原始轨迹数据通常是由坐标-时间戳元组构成的有序序列,而现有的大多数数据分析算法均要求输入数据位于向量空间中.因此,为了将轨迹数据从变长的坐标-时间戳序列转化成定长的向量表示且保持原有的特征,对轨迹数据进行有效的表示是十分重要且必要的一步.传统的轨迹表示方法大多是基于人工设计特征,通常仅将轨迹表示作为数据预处理的一部分.随着深度学习的兴起,这种从大规模数据中学习的能力使得基于深度学习的轨迹表示方法相比于传统方法取得了巨大的效果提升,并赋予了轨迹表示更多的可能性.对轨迹表示领域中的研究进展进行了全面的总结,将轨迹表示按照研究对象的不同尺度,归纳为对轨迹单元的表示和对整条轨迹的表示两大类别,并在每种类别下对不同原理的方法进行了对比分析.其中重点分析了基于轨迹点的表示方法,也对近年来广泛使用的基于神经网络的轨迹表示的研究成果做了系统的归类.此外,介绍了基于轨迹表示的关键应用,最后对轨迹表示领域的未来研究方向进行了展望.



Abstract:The rapid development of location-aware applications and services poses new challenges for trajectory data mining. The raw trajectory data usually consist of ordered sequences of coordinate-timestamp tuple, while many algorithms widely used for data analysis require input data to be in vector space. Therefore, it is an important and necessary step to effectively represent trajectory data from variable-length coordinate-timestamp sequence to a fixed-length vector that maintains the spatial-temporal characteristics of the movement. Most conventional trajectory representation methods are based on feature engineering, in which trajectory representation is usually considered as part of the data preprocessing. With the prevalence of deep learning, the ability of learning from large-scale data endows deep learning-based methods for trajectory representation with more potential and vitality, which achieved better performance compared to traditional methods. This paper provides a comprehensive review of recent progress in trajectory representation and summarizes the trajectory representation methods into two categories according to the different scales:trajectory unit representation and entire trajectory representation. In each category, the methods of different principles are compared and analyzed. Among them, the methods based on trajectory point are emphasized, and also the widely used methods based on neural networks are systematically classified. Besides, the applications related to trajectory representation under each category are introduced. Finally, the future research directions are pointed out in the field of trajectory representation.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/6210
相关话题/数据 序列 介绍 系统 空间

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 区块链系统攻击与防御技术研究进展
    摘要:区块链作为一种多技术融合的新兴服务架构,因其去中心化、不可篡改等特点,受到了学术界和工业界的广泛关注.然而,由于区块链技术架构的复杂性,针对区块链的攻击方式层出不穷,逐年增加的安全事件导致了巨大的经济损失,严重影响了区块链技术的发展与应用.从层级分类、攻击关联分析两个维度对区块链已有安全问题的 ...
    本站小编 Free考研考试 2022-01-02
  • 面向领域的软件系统构造与质量保障专题前言
    摘要:软件是推动新一代信息技术发展的驱动力.随着互联网、云计算、人工智能等技术的快速发展,软件与物联网、区块链、自动驾驶等众多领域的融合进一步加强,正引领并促进这些领域向数字化、智能化发展,为社会、经济的加速演进和创新发展带来了新的契机.因此,面向领域的软件技术不仅是软件领域,也是众多其他领域国内外 ...
    本站小编 Free考研考试 2022-01-02
  • 基于环境建模的物联网系统TAP规则生成方法
    摘要:用户需求是物联网智能服务的根本驱动力,如IFTTT等很多物联网框架允许用户使用简单的触发-命令编程(TAP)规则进行编程,但它们描述的是设备调度程序,并不是用户服务需求.一些物联网系统提出采用面向目标的需求方法,支持服务目标的分解,但很难保证物联网不同服务间的一致性和服务部署的完整性.为了支持 ...
    本站小编 Free考研考试 2022-01-02
  • 时空轨迹数据驱动的自动驾驶场景元建模方法
    摘要:时空轨迹数据驱动的汽车自动驾驶场景建模,是当前汽车自动驾驶领域中驾驶场景建模、仿真所面临的关键问题,对于提高系统的安全性具有重要的研究意义.近年来,随着时空轨迹数据建模及应用研究的快速发展,时空轨迹数据应用于特定领域建模的研究引起人们的广泛关注.但是,由于时空轨迹数据所反映的现实世界的多元性和 ...
    本站小编 Free考研考试 2022-01-02
  • 区块链赋能的高效物联网数据激励共享方案
    摘要:近年来,随着大量设备不断地加入物联网中,数据共享作为物联网市场的主要驱动因素成为了研究热点.然而,当前的物联网数据共享存在着出于安全顾虑和缺乏激励机制等原因导致用户不愿意参与共享数据的问题.在此背景下,区块链技术为解决用户的信任问题和提供安全的数据存储被引入到物联网数据共享中.然而,在构建基于 ...
    本站小编 Free考研考试 2022-01-02
  • 面向神经机器翻译系统的多粒度蜕变测试
    摘要:机器翻译是利用计算机将一种自然语言转换成另一种自然语言的任务,是人工智能领域研究的热点问题之一.近年来,随着深度学习的发展,基于序列到序列结构的神经机器翻译模型在多种语言对的翻译任务上都取得了超过统计机器翻译模型的效果,并被广泛应用于商用翻译系统中.虽然商用翻译系统的实际应用效果直观表明了神经 ...
    本站小编 Free考研考试 2022-01-02
  • 支撑机器学习的数据管理技术综述
    摘要:应用驱动创新,数据库技术就是在支持主流应用的提质降本增效中发展起来的.从OLTP、OLAP到今天的在线机器学习建模无不如此.机器学习是当前人工智能技术落地的主要途径,通过对数据进行建模而提取知识、实现预测分析.从数据管理的视角对机器学习训练过程进行解构和建模,从数据选择、数据存储、数据存取、自 ...
    本站小编 Free考研考试 2022-01-02
  • 支撑人工智能的数据管理与分析技术专刊前言
    摘要:近年来,支撑人工智能的数据管理与分析技术正成为大数据和人工智能领域研究的热点问题之一.利用和发展数据管理与分析理论技术,为提升人工智能系统全生命周期的效率和有效性提供基础性支撑,必将进一步促进基于大数据的人工智能技术发展与其在更大范围的推广应用.本专刊聚焦在数据管理与人工智能融合发展的过程中, ...
    本站小编 Free考研考试 2022-01-02
  • 数据库内AI模型优化
    摘要:在大量变化着的数据中,数据分析师常常只关心预测结果为特定值的少量数据.然而,利用机器学习模型进行推理的工作流程中,由于机器学习算法库默认数据以单表方式组织,用户必须先通过SQL语句查询出全部数据,即使随后在模型推理过程中会将大量数据丢弃.指出了在这个过程中,如果可以预先从模型中提取信息,就有望 ...
    本站小编 Free考研考试 2022-01-02
  • 面向企业数据孤岛的联邦排序学习
    摘要:排序学习(learning-to-rank,简称LTR)模型在信息检索领域取得了显著成果,而该模型的传统训练方法需要收集大规模文本数据.然而,随着数据隐私保护日渐受到人们重视,从多个数据拥有者(如企业)手中收集数据训练排序学习模型的方式变得不可行.各企业之间数据被迫独立存储,形成了数据孤岛.由 ...
    本站小编 Free考研考试 2022-01-02