删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

网络断层扫描:理论与算法

本站小编 Free考研考试/2022-01-02

摘要:网络测量为网络设计者与管理者提供网络内部细粒度的运行状态信息,是对网络进行高效管理与优化的基础.网络断层扫描是网络测量领域的一个研究热点,是一种端到端的网络测量方法.与传统网络内部测量方法不同,网络断层扫描利用端到端的测量信息计算和推断网络内部性能和状态,从而实现与网络组成和协议无关的网络测量,具有较低的测量开销.对近年来国内外****在网络断层扫描研究领域取得的成果进行了系统的总结.首先介绍了网络断层扫描的基本模型,并指出了影响网络断层扫描性能的3个重要因素:监测节点部署、测量路径构造和测量数据分析;接着,依次归纳了这3个方面的研究进展和研究成果;随后分析了已有网络断层扫描方法在实际应用中存在的缺陷,并给出了应对这些核心缺陷的理论和关键算法;最后,基于现有研究成果讨论了网络断层扫描的发展趋势和进一步的研究方向.



Abstract:Network measurement provides the network designers and managers with fine-grained information on the operational statuses of the network and is the basis for efficient network management and optimization. Network tomography is a hot topic in the field of network measurement and is an end-to-end approach for network measurement. Unlike the traditional internal approaches for network measurement, network tomography uses the end-to-end measurements to infer the internal network performance and network states, thereby incurring low overhead to achieve the network measurement that is independent of the network composition and the network protocols. This paper systematically summarizes the representative research works about network tomography in the past few years. First, the basic model of network tomography is given and three key factors that impact the performance of network tomography are identified: the monitoring node placement, the measurement path construction, and the measurement data analysis. Then, the related works are reviewed on these three factors separately. In particular, the major limitations of existing network tomography methods in practical applications are explored, and the efficient solutions proposed in recent years are introduced. Lastly, some challenges and future research directions are discussed in the field of network tomography based on existing research works.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/6134
相关话题/网络 测量 信息 基础 数据

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 面向AI的数据管理技术综述
    摘要:人工智能技术因其强大的学习和泛化能力已被广泛应用于各种真实场景中.然而,现有的人工智能技术仍然面临着三大挑战:第一,现有的AI技术使用门槛高,依赖于AI从业者选择合适模型、设计合理参数、编写程序,因此很难被广泛应用到非计算机领域;第二,现有的AI算法训练效率低,造成了大量计算资源的浪费,甚至延 ...
    本站小编 Free考研考试 2022-01-02
  • 智能软件定义网络
    摘要:近年来,人工智能(artificialintelligence,简称AI)以强劲势头吸引着学术界和工业界的目光,并被广泛应用于各种领域.计算机网络为人工智能的实现提供了关键的计算基础设施.然而,传统网络固有的分布式结构往往无法快速、精准地提供人工智能所需要的计算能力,导致人工智能难以实际应用和 ...
    本站小编 Free考研考试 2022-01-02
  • 复杂网络的双曲空间表征学习方法
    摘要:复杂网络在现实场景中无处不在,高效的复杂网络分析技术具有广泛的应用价值,比如社区检测、链路预测等.然而,很多复杂网络分析方法在处理大规模网络时需要较高的时间、空间复杂度.网络表征学习是一种解决该问题的有效方法,该类方法将高维稀疏的网络信息转化为低维稠密的实值向量,可以作为机器学习算法的输入,便 ...
    本站小编 Free考研考试 2022-01-02
  • 网络匿名度量研究综述
    摘要:保护网络空间隐私的愿望推动了匿名通信系统的研究,使得用户可以在使用互联网服务时隐藏身份和通信关系等敏感信息,不同的匿名通信系统提供不同强度的匿名保护.如何量化和比较这些系统提供的匿名程度,从开始就是重要的研究主题,如今愈发得到更多关注,成为新的研究焦点,需要开展更多的研究和应用.匿名度量可以帮 ...
    本站小编 Free考研考试 2022-01-02
  • 面向网络取证的网络攻击追踪溯源技术分析
    摘要:首先定位网络攻击事件的源头,然后进行有效的电子数据证据的收集,是网络取证的任务之一.定位网络攻击事件源头需要使用网络攻击追踪溯源技术.然而,现有的网络攻击追踪溯源技术研究工作主要从防御的角度来展开,以通过定位攻击源及时阻断攻击为主要目标,较少会考虑到网络取证的要求,从而导致会在网络攻击追踪溯源 ...
    本站小编 Free考研考试 2022-01-02
  • 面向时序图数据的快速环枚举算法
    摘要:时序图数据是一类边上带有时间戳信息的图数据.在时序图数据中,时序环是边满足时间戳递增约束的回路.时序环枚举在现实中有着很多应用,它可以帮助挖掘金融网络中的欺诈行为.此外,研究时序环的数量对于刻画不同时序图的特性也有重要作用.基于2018年由RohitKumar等人提出的时序环枚举算法(2SCE ...
    本站小编 Free考研考试 2022-01-02
  • 基于级联密集网络的轮廓波变换域图像复原
    摘要:近年来,卷积神经网络凭借极强的学习能力,在图像复原任务上实现了比传统学习方法更令人满意的结果.但是,由于丢失了重要的纹理细节,这些基于卷积神经网络的方法普遍存在着复原图像过度平滑的缺点.为解决该问题,提出一种基于级联密集型卷积神经网络的轮廓波域图像复原方法,可以应用于单幅图像去噪、超分辨率及J ...
    本站小编 Free考研考试 2022-01-02
  • 数据驱动的移动应用用户接受度建模与预测
    摘要:应用市场(appmarket)已经成为互联网环境下软件应用开发和交付的一种主流模式.相对于传统模式,应用市场模式下,软件的交付周期更短,用户的反馈更快,最终用户和开发者之间的联系更加紧密和直接.为应对激烈的竞争和动态演变的用户需求,移动应用开发者必须以快速迭代的方式不断更新应用,修复错误缺陷, ...
    本站小编 Free考研考试 2022-01-02
  • 函数级数据依赖图及其在静态脆弱性分析中的应用
    摘要:数据流分析是二进制程序分析的重要手段,但传统数据依赖图(DDG)构建的时间与空间复杂度较高,限制了可分析代码的规模.提出了函数级数据依赖图(FDDG)的概念,并设计了函数级数据依赖图的构建方法.在考虑函数参数及参数间相互依赖关系的基础上,将函数作为整体分析,忽略函数内部的具体实现,显著缩小了数 ...
    本站小编 Free考研考试 2022-01-02
  • 类属型数据核子空间聚类算法
    摘要:现有的类属型数据子空间聚类方法大多基于特征间相互独立假设,未考虑属性间存在的线性或非线性相关性.提出一种类属型数据核子空间聚类方法.首先引入原作用于连续型数据的核函数将类属型数据投影到核空间,定义了核空间中特征加权的类属型数据相似性度量.其次,基于该度量推导了类属型数据核子空间聚类目标函数,并 ...
    本站小编 Free考研考试 2022-01-02