删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于ICN网络架构的社区感知型MSN路由机制

本站小编 Free考研考试/2022-01-02

摘要:移动社交网络(mobile social network,简称MSN)利用移动用户之间的社交关系,通过节点间的协作式转发实现消息交付.然而,随着大数据时代的到来,MSN需要满足移动用户日益增长的对内容(如视频)的需求.由于信息中心网络(information-centric networking,简称ICN)对移动性的支持,基于ICN架构,提出了一种MSN中基于社区划分的路由机制.在兴趣决策中,利用节点请求中的内容名字获取用户的兴趣偏好,进而计算用户间的兴趣差异度量;根据兴趣差异将节点划分为兴趣社区,依据这些兴趣社区进行兴趣包路由.在数据决策中,根据节点历史相遇信息计算用户间的相遇规律度量,根据相遇规律将节点划分为社交社区,依据这些社交社区进行数据包路由.同时,根据兴趣社区和社交社区信息优化节点的内容缓存,以快速满足未来的内容请求.进行了仿真实验,通过与现有机制在包交付率、平均延迟、平均跳数和网络开销方面的性能对比,表明所提出的机制是可行且有效的.



Abstract:MSN (mobile social network) realizes message delivery by leveraging social relationships of mobile users via cooperation forwarding of nodes. However, with the coming of the big data era, MSN should satisfy the daily increasing content (e.g., video) requests of the mobile users. Considering that ICN (information-centric networking) supports mobility natively, in this study, a community aware routing scheme in MSN is proposed, which is based on ICN architecture. In interest decision, the proposed interest distance metrics among users are calculated based on the interest preferences of users, which are obtained from the content name of the requests of nodes. Then, nodes are detected into interest communities based on the interest distances, and interest packets are routed based on these detected interest communities. In data decision, the proposed encounter regularity metrics are calculated according to the history encounter information of nodes. Then, based on the encounter regularities, nodes are detected into social communities, and data packets are routed based on these detected social communities. Meanwhile, the proposed routing scheme optimizes content caching of nodes based on the detected interest communities and social communities, in order to satisfy the future content requests rapidly. By comparing with the existed schemes on packet delivery, average hops, average delay and network overhead, simulation experiments show that the proposed scheme is feasible and effective.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5708
相关话题/社区 网络 计算 数据 信息

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 节点度估计和静态博弈转发策略的Ad Hoc网络路由协议
    摘要:针对AdHoc网络路由发现过程中广播路由请求分组导致的广播风暴问题,提出了一种基于节点度估计和静态博弈转发策略的AdHoc网络路由协议NGRP.NGRP考虑边界影响,采用分段函数的思想将网络场景分为中心、边和角区域,分别估算网络中节点在不同区域的节点度,避免了周期性广播Hello消息获取节点度 ...
    本站小编 Free考研考试 2022-01-02
  • 移动边缘计算中资源受限的串行任务卸载策略
    摘要:云计算和移动互联网的不断融合,促进了移动云计算的产生和发展,但是其难以满足终端应用对带宽和延迟的需求.移动边缘计算在靠近用户的网络边缘提供计算和存储能力,通过计算卸载,将终端任务迁移至边缘服务器上面执行,能够有效降低应用延迟和节约终端能耗.然而,目前针对移动边缘环境任务卸载的主要工作大多考虑单 ...
    本站小编 Free考研考试 2022-01-02
  • 面向大数据分析作业的启发式云资源供给方法
    摘要:云计算已成为大数据分析作业的主流运行支撑环境,选择合适的云资源优化其性能面临巨大挑战.当前研究主要考虑大数据分析框架(如Hadoop,Spark等)的多样性,采用机器学习方法进行资源供给,但样本少容易陷入局部最优解.提出了大数据环境下基于负载分类的启发式云资源供给方法RP-CH,基于云资源共享 ...
    本站小编 Free考研考试 2022-01-02
  • 深度神经网络测试研究综述
    摘要:随着深度神经网络技术的快速发展、大数据的涌现和计算能力的显著提升,深度神经网络被越来越多地应用到各个安全攸关领域,例如自动驾驶、人脸识别、飞机碰撞检测等.传统的软件系统通常由开发人员手工编写代码实现其内部的决策逻辑,并依据相应的测试覆盖准则设计测试用例来测试系统代码.与传统的软件系统不同,深度 ...
    本站小编 Free考研考试 2022-01-02
  • 面向顺序存储结构的数据流分析
    摘要:C程序中数组、malloc动态分配后的连续内存等顺序存储结构被大量使用,但大多数传统的数据流分析方法未能充分描述其结构及其上的操作,特别是在利用指针访问顺序存储结构时,传统的分析方法只关注了指针的指向关系,而未讨论指针可能发生偏移的数值信息,且未考虑发生偏移时可能存在越界的不安全问题,导致了对 ...
    本站小编 Free考研考试 2022-01-02
  • 拉普拉斯阶梯网络
    摘要:阶梯网络不仅是一种基于深度学习的特征提取器,而且能够应用于半监督学习中.深度学习在实现了复杂函数逼近的同时,也缓解了多层神经网络易陷入局部最小化的问题.传统的自编码、玻尔兹曼机等方法易忽略高维数据的低维流形结构信息,使用这些方法往往会获得无意义的特征表示,这些特征不能有效地嵌入到后续的预测或识 ...
    本站小编 Free考研考试 2022-01-02
  • 轮廓指导的层级混合多任务全卷积网络
    摘要:传统的深度多任务网络通常在不同任务之间共享网络的大部分层(即特征表示层).由于这样做会忽视不同任务各自的特殊性,所以往往会制约其适应数据的能力.提出了一种层级混合的多任务全卷积网络HFFCN,以解决CT图像中的前列腺分割问题.特别地,使用一个多任务框架来解决这个问题.这个框架包括一个分割前列腺 ...
    本站小编 Free考研考试 2022-01-02
  • 基于代理重加密的云数据访问授权确定性更新方案
    摘要:有越来越多的用户选择云为其进行存储、运算、共享等数据处理工作,因此云端数据量与日俱增,其中不乏敏感数据和隐私信息.如何对用户托管于云端的数据进行授权管理,保证数据机密性、访问授权有效性等至关重要.为此,提出一种基于代理重加密(proxyre-encryption,简称PRE)的云端数据访问授权 ...
    本站小编 Free考研考试 2022-01-02
  • 面向流数据分类的在线学习综述
    摘要:流数据分类旨在从连续不断到达的流式数据中增量学习一个从输入变量到类标变量的映射函数,以便对随时到达的测试数据进行准确分类.在线学习范式作为一种增量式的机器学习技术,是流数据分类的有效工具.主要从在线学习的角度对流数据分类算法的研究现状进行综述.具体地,首先介绍在线学习的基本框架和性能评估方法, ...
    本站小编 Free考研考试 2022-01-02
  • 条件概率图产生式对抗网络
    摘要:产生式对抗网络(generativeadversarialnetworks,简称GANs)可以生成逼真的图像,因此最近被广泛研究.值得注意的是,概率图生成对抗网络(graphical-GAN)将贝叶斯网络引入产生式对抗网络框架,以无监督的方式学习到数据的隐藏结构.提出了条件概率图生成对抗网络( ...
    本站小编 Free考研考试 2022-01-02