删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

移动边缘计算中资源受限的串行任务卸载策略

本站小编 Free考研考试/2022-01-02

摘要:云计算和移动互联网的不断融合,促进了移动云计算的产生和发展,但是其难以满足终端应用对带宽和延迟的需求.移动边缘计算在靠近用户的网络边缘提供计算和存储能力,通过计算卸载,将终端任务迁移至边缘服务器上面执行,能够有效降低应用延迟和节约终端能耗.然而,目前针对移动边缘环境任务卸载的主要工作大多考虑单个移动终端和边缘服务器资源无限的场景,这在实际应用中存在一定的局限性.因此,针对边缘服务器资源受限下的任务卸载问题,提出了一种面向多用户的串行任务动态卸载策略(multi-user serial task dynamic offloading strategy,简称MSTDOS).该策略以应用的完成时间和移动终端的能量消耗作为评价指标,遵循先来先服务的原则,采用化学反应优化算法求解,充分考虑多用户请求对服务器资源的竞争关系,动态调整选择策略,为应用做出近似最优的卸载决策.仿真结果表明,MSTDOS策略比已有算法能够取得更好的应用性能.



Abstract:The continuous integration of cloud computing and mobile Internet promotes the generation and development of mobile cloud computing (MCC), but it is difficult to meet the demand for bandwidth and delay of terminal applications. Mobile edge computing (MEC) provides computing and storage capabilities at the edge of the user's network. By computing offloading, the terminal task is migrated to the edge server for execution, which can effectively reduce application delay and conserve terminal energy consumption. However, this has certain limitations in practical applications for existing works that focus on a single mobile terminal and assume the server's resources are sufficient for task offloading on MEC environment. This study focuses on the task offloading problem under the resource-constrained MEC environment and proposes a multi-user serial task dynamic offloading strategy (MSTDOS). The strategy uses the completion time of the application and the energy consumption of the mobile terminal as evaluation indicators, follows the principle of first come first served, uses a chemical reaction optimization algorithm to solve, while can make a near-optimal offloading strategy for the application by consider the interactionamong multiple terminals and dynamically adjust the selection decision. Simulation results show that MSTDOS strategy can achieve better application performance than existing algorithms.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5705
相关话题/计算 资源 网络 互联网 环境

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 深度神经网络测试研究综述
    摘要:随着深度神经网络技术的快速发展、大数据的涌现和计算能力的显著提升,深度神经网络被越来越多地应用到各个安全攸关领域,例如自动驾驶、人脸识别、飞机碰撞检测等.传统的软件系统通常由开发人员手工编写代码实现其内部的决策逻辑,并依据相应的测试覆盖准则设计测试用例来测试系统代码.与传统的软件系统不同,深度 ...
    本站小编 Free考研考试 2022-01-02
  • 拉普拉斯阶梯网络
    摘要:阶梯网络不仅是一种基于深度学习的特征提取器,而且能够应用于半监督学习中.深度学习在实现了复杂函数逼近的同时,也缓解了多层神经网络易陷入局部最小化的问题.传统的自编码、玻尔兹曼机等方法易忽略高维数据的低维流形结构信息,使用这些方法往往会获得无意义的特征表示,这些特征不能有效地嵌入到后续的预测或识 ...
    本站小编 Free考研考试 2022-01-02
  • 轮廓指导的层级混合多任务全卷积网络
    摘要:传统的深度多任务网络通常在不同任务之间共享网络的大部分层(即特征表示层).由于这样做会忽视不同任务各自的特殊性,所以往往会制约其适应数据的能力.提出了一种层级混合的多任务全卷积网络HFFCN,以解决CT图像中的前列腺分割问题.特别地,使用一个多任务框架来解决这个问题.这个框架包括一个分割前列腺 ...
    本站小编 Free考研考试 2022-01-02
  • 条件概率图产生式对抗网络
    摘要:产生式对抗网络(generativeadversarialnetworks,简称GANs)可以生成逼真的图像,因此最近被广泛研究.值得注意的是,概率图生成对抗网络(graphical-GAN)将贝叶斯网络引入产生式对抗网络框架,以无监督的方式学习到数据的隐藏结构.提出了条件概率图生成对抗网络( ...
    本站小编 Free考研考试 2022-01-02
  • 基于带噪观测的远监督神经网络关系抽取
    摘要:远监督关系抽取的最大优势是通过知识库和自然语言文本的自动对齐生成标记数据.这种简单的自动对齐机制在将人从繁重的样本标注工作中解放出来的同时,不可避免地会产生各种错误数据标记,进而影响构建高质量的关系抽取模型.针对远监督关系抽取任务中的标记噪声问题,提出"最终句子对齐的标签是基于某些未知因素所生 ...
    本站小编 Free考研考试 2022-01-02
  • 基于规则推理网络的分类模型
    摘要:为了缓解神经网络的"黑盒子"机制引起的算法可解释性低的问题,基于使用证据推理算法的置信规则库推理方法(以下简称RIMER)提出了一个规则推理网络模型.该模型通过RIMER中的置信规则和推理机制提高网络的可解释性.首先证明了基于证据推理的推理函数是可偏导的,保证了算法的可行性;然后,给出了规则推 ...
    本站小编 Free考研考试 2022-01-02
  • 面向推荐系统的图卷积网络
    摘要:图卷积网络是一种针对图信号的深度学习模型,由于具有强大的特征表征能力得到了广泛应用.推荐系统可视为图信号的链接预测问题,因此近年来提出了使用图卷积网络解决推荐问题的方法.推荐系统中存在用户与商品间的异质顶点交互和用户(或商品)内部的同质顶点交互,然而,现有方法中的图卷积操作要么仅在异质顶点间进 ...
    本站小编 Free考研考试 2022-01-02
  • 面向GPU平台的复杂网络core分解方法研究
    摘要:在复杂网络理论中,core分解是一种最基本的度量网络节点"重要性"并分析核心子图的方法.Core分解广泛应用于社交网络的用户行为分析、复杂网络的可视化、大型软件的代码静态分析等应用.随着复杂网络的图数据规模和复杂性的增大,现有研究工作基于多核CPU环境设计core分解并行算法,由于CPU核数和 ...
    本站小编 Free考研考试 2022-01-02
  • 基于异构社交网络信息和内容信息的事件推荐
    摘要:基于事件的社交网络使得事件推荐受到越来越多的关注.不同于其他推荐问题(如电影推荐等),事件推荐具有3类不同信息:用户构成的异构社交网络关系信息(在线社交网络和离线社交网络)、用户/事件的内容信息、用户对事件的隐式反馈信息.如何有效融合这些信息进行事件推荐是该领域****普遍关注的问题.提出一种 ...
    本站小编 Free考研考试 2022-01-02
  • 基于图神经网络的动态网络异常检测算法
    摘要:动态变化的图数据在现实应用中广泛存在,有效地对动态网络异常数据进行挖掘,具有重要的科学价值和实践意义.大多数传统的动态网络异常检测算法主要关注于网络结构的异常,而忽视了节点和边的属性以及网络变化的作用.提出一种基于图神经网络的异常检测算法,将图结构、属性以及动态变化的信息引入模型中,来学习进行 ...
    本站小编 Free考研考试 2022-01-02