删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于异构社交网络信息和内容信息的事件推荐

本站小编 Free考研考试/2022-01-02

摘要:基于事件的社交网络使得事件推荐受到越来越多的关注.不同于其他推荐问题(如电影推荐等),事件推荐具有3类不同信息:用户构成的异构社交网络关系信息(在线社交网络和离线社交网络)、用户/事件的内容信息、用户对事件的隐式反馈信息.如何有效融合这些信息进行事件推荐是该领域****普遍关注的问题.提出一种新的混合事件推荐方法CHS-BPR,该方法以贝叶斯潜在因子模型为基本框架来处理用户对事件的隐式反馈信息,同时考虑用户/事件的内容信息和用户之间的异构社交网络信息,首次实现了同时使用3种信息来做事件推荐,并以真实数据集验证了所提方法的有效性.



Abstract:The Web has grown into one of the most important channels to communicate social events nowadays. However, the sheer volume of events available in event-based social networks (EBSNs) often undermines the users' ability to choose the events that best fit their interests. Recommender systems appear as a natural solution for this problem. Different from classic recommendation problems (e.g. movies), event recommendation generally faces three complex problems:Heterogeneous social relationships (online and offline) among users, the implicit feedback data and the content-context information of users/events. How to effectively fuse this information for event recommendation is a common concern for scholars in this field. This work presents a Bayesian latent factor model that combines users/items content-context information and heterogeneous social information for event recommendation. Experimental results on several real-world datasets demonstrate the proposed method can efficiently tackle with implicit feedback characteristic for event recommendation.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5544
相关话题/信息 推荐 网络 数据 电影

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 面向GPU平台的复杂网络core分解方法研究
    摘要:在复杂网络理论中,core分解是一种最基本的度量网络节点"重要性"并分析核心子图的方法.Core分解广泛应用于社交网络的用户行为分析、复杂网络的可视化、大型软件的代码静态分析等应用.随着复杂网络的图数据规模和复杂性的增大,现有研究工作基于多核CPU环境设计core分解并行算法,由于CPU核数和 ...
    本站小编 Free考研考试 2022-01-02
  • 人工智能赋能的数据管理技术研究
    摘要:大数据时代,数据规模庞大、数据管理应用场景复杂,传统数据库和数据管理技术面临很大的挑战.人工智能技术因其强大的学习、推理、规划能力,为数据库系统提供了新的发展机遇.人工智能赋能的数据库系统通过对数据分布、查询负载、性能表现等特征进行建模和学习,自动地进行查询负载预测、数据库配置参数调优、数据分 ...
    本站小编 Free考研考试 2022-01-02
  • 人工智能赋能的数据管理、分析与系统专刊前言
    摘要:大数据时代,数据规模庞大,数据管理应用场景复杂,传统数据库和数据管理技术面临很大的挑战.人工智能技术因其强大的学习、推理、规划能力,为数据库系统提供了新的发展机遇.专刊强调数据管理与人工智能的深度融合,研究人工智能赋能的数据库新技术和新型系统,包括两方面:(1)传统数据管理、数据分析技术及系统 ...
    本站小编 Free考研考试 2022-01-02
  • 面向关系数据库的智能索引调优方法
    摘要:数据库索引是关系数据库系统实现快速查询的有效方式之一.智能索引调优技术可以有效地对数据库实例进行索引调节,从而保持数据库高效的查询性能.现有的方法大多利用了数据库实例的查询日志,它们先从查询日志中得到候选索引,再利用人工设计的模型选择索引,从而调节索引.然而,从查询日志中产生出的候选索引可能并 ...
    本站小编 Free考研考试 2022-01-02
  • 面向数据特征的内存跳表优化技术
    摘要:跳表作为数据库中被广泛采用的索引技术,优点在于可以达到类似折半查找的复杂度O(log(n)).但是标准跳表算法中,结点的层数是通过随机算法生成的,这就导致跳表的性能是不稳定的.在极端情况下,查找复杂度会退化到O(n).这是因为经典跳表结构没有结合数据的特征.一个稳定的跳表结构应该充分考虑数据的 ...
    本站小编 Free考研考试 2022-01-02
  • 基于相关性分析的工业时序数据异常检测
    摘要:多维时间序列上的异常检测,是时态数据分析的重要研究问题之一.近年来,工业互联网中传感器设备采集并积累了大量工业时间序列数据,这些数据具有模式多样、工况多变的特性,给异常检测方法的效率、效果和可靠性均提出更高要求.序列间相互影响、关联,其隐藏的相关性信息可以用于识别、解释异常问题.基于此,提出一 ...
    本站小编 Free考研考试 2022-01-02
  • 面向多维稀疏数据仓库的欺诈销售行为挖掘
    摘要:分销渠道系统中,产品制造商会分配给销售额较大的分销商更多返点利润鼓励销售,而分销商之间可能会联合起来将多个分销商的销售业绩累计在其中一个分销商上,获取高额利润,这种商业欺诈行为被称为挂单或窜货.由于数据中大量正常极值点的存在,使得传统异常探测算法很难区分正常极值和由挂单导致的异常极值;另外,多 ...
    本站小编 Free考研考试 2022-01-02
  • 基于图神经网络的动态网络异常检测算法
    摘要:动态变化的图数据在现实应用中广泛存在,有效地对动态网络异常数据进行挖掘,具有重要的科学价值和实践意义.大多数传统的动态网络异常检测算法主要关注于网络结构的异常,而忽视了节点和边的属性以及网络变化的作用.提出一种基于图神经网络的异常检测算法,将图结构、属性以及动态变化的信息引入模型中,来学习进行 ...
    本站小编 Free考研考试 2022-01-02
  • 融合显式反馈与隐式反馈的协同过滤推荐算法
    摘要:显式反馈与隐式反馈相结合,可以有效提升推荐性能.但是现有的融合显式反馈与隐式反馈的推荐系统存在未能发挥隐式反馈数据缺失值反映用户隐藏偏好的能力,或者未能保留显式反馈数据反映用户偏好程度的能力的局限性.为了解决这个问题,提出了一种融合显式反馈与隐式反馈的协同过滤推荐算法.该算法分为两个阶段:第1 ...
    本站小编 Free考研考试 2022-01-02
  • 基于注意力机制的规范化矩阵分解推荐算法
    摘要:近年来,矩阵分解(MF)技术因其有效性和简便性在推荐系统中得到广泛应用.但是,数据稀疏和冷启动问题导致MF学习到的用户特征向量不能准确地代表用户的偏好以及反映用户间的相似关系,影响了模型的性能.为了解决该问题,规范化矩阵分解(RMF)技术引起了研究者的关注.挖掘用户间可靠的相似关系,是RMF需 ...
    本站小编 Free考研考试 2022-01-02