摘要:动态变化的图数据在现实应用中广泛存在,有效地对动态网络异常数据进行挖掘,具有重要的科学价值和实践意义.大多数传统的动态网络异常检测算法主要关注于网络结构的异常,而忽视了节点和边的属性以及网络变化的作用.提出一种基于图神经网络的异常检测算法,将图结构、属性以及动态变化的信息引入模型中,来学习进行异常检测的表示向量.具体地,改进图上无监督的图神经网络框架DGI,提出一种面向动态网络无监督表示学习算法Dynamic-DGI.该方法能够同时提取网络本身的异常特性以及网络变化的异常特性,用于表示向量的学习.实验结果表明,使用该算法学得的网络表示向量进行异常检测,得到的结果优于最新的子图异常检测算法SpotLight,并且显著优于传统的网络表示学习算法.除了能够提升异常检测的准确度,该算法也能够挖掘网络中存在的有实际意义的异常.
Abstract:Dynamic graph structured data is ubiquitous in real-life applications. Mining outliers on dynamic networks is an important problem, which is very useful for many practical applications. Most traditional network outlier detection algorithms focus mainly on the strutraulal anomaly, ignoring the nodes and edges' attributes, and the time-varying features as well. This study proposes a graph neural network based network anomaly detection algorithm which can capture the nodes and edges' attributes and time-varying features and fully uses these features to learn a representation vector for each node. Specifically, the proposed algorithm improves an unsupervised graph neural network framework called DGI. Based on DGI, a new danamic DGI algorithm is proposed, which is called Dynamic-DGI, for dynamic networks. Dynamic-DGI can simultaneously extracts the abnormal characteristics of the network itself and the abnormal characteristics of the network changes. The experimental results show that the proposed algorithm is better than the state-of-the-art anomaly detection algorithm SpotLight, and is significantly better than the traditional network representation learning algorithms. In addition to improving the accuracy, the proposed algorithmis also able to mine interesting anomalies in the network.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/5903
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于图神经网络的动态网络异常检测算法
本站小编 Free考研考试/2022-01-02
相关话题/网络 结构 数据 科学 信息
轩辕:AI原生数据库系统
摘要:大数据时代下,数据库系统主要面临3个方面的挑战:首先,基于专家经验的传统优化技术(如代价估计、连接顺序选择、参数调优)已经不能满足异构数据、海量应用和大规模用户对性能的需求,可以设计基于学习的数据库优化技术,使数据库更智能;其次,AI时代,很多数据库应用需要使用人工智能算法,如数据库中的图像搜 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02学习式数据库系统:挑战与机遇
摘要:通用的数据库系统为不同的应用需求与数据类型提供统一的处理方式,在取得了巨大成功的同时,也暴露了一定的局限性:由于没有结合具体应用的数据分布与工作负载,系统往往难以保证性能的最优.为了解决这一问题,"学习式数据库系统"成为了目前数据库领域的研究热点,它利用机器学习技术有效捕获负载与数据的特性,从 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于PSP_HDP主题模型的非结构化经济指标挖掘
摘要:随着经济活动数据的不断丰富,互联网平台上产生了大量的财经文本,其中蕴含了经济领域发展状况的影响因素.如何从这些财经文本中有效地挖掘与经济有关的经济要素,是实现非结构化数据在经济研究中应用的关键.根据人工构建非结构化经济指标的局限性,以及主题模型在非结构化经济指标挖掘中存在的问题,结合已有经济领 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02数据集成方法发展与展望
摘要:数据集成在数据管理与分析领域起着重要的作用.尽管从学术界首次提出并开始研究数据集成问题已经过去30多年,但在各个领域仍然存在着大量与数据集成问题密切相关的问题亟待解决.对数据集成领域从2001年开始到现在相关工作的发展脉络进行了梳理与总结.通过追踪数据集成方法的发展轨迹,不仅可以了解前人在解决 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02宏观篇章结构表示体系和语料建设
摘要:篇章结构分析是自然语言处理领域的一个重要研究方向.篇章结构分析有助于理解篇章的结构和语义,并为自然语言处理的应用(如自动文摘、信息抽取、问答系统等)提供有力的支撑.目前,篇章结构分析主要集中在微观的层面,分析的重点是句子内部或句子与句子之间的关系和结构,而宏观层面的研究相对较少.因此,以篇章结 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02数据标注研究综述
摘要:数据标注是大部分人工智能算法得以有效运行的关键环节.数据标注越准确、标注的数据量越大,算法的性能就越好.数据标注行业的发展带动了中国许多城市和城镇的就业,促使中国逐渐成为世界数据标注的中心.阐述了数据标注的发展概况,包括起源、应用场景、分类和任务;列举了目前常用的标注数据集、开源的数据标注工具 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于符号语义的不完整数据聚集查询处理算法
摘要:研究了基于符号语义的不完整数据聚集查询处理问题.不完整数据又称为缺失数据,缺失值包括可填充的和不可填充的两种类型.现有的缺失值填充算法不能保证填充后查询结果的准确度,为此,给出了不完整数据聚集查询结果的区间估计.在符号语义中扩展了传统关系数据库模型,提出了一种通用不完整数据库模型.该模型可以处 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于语义标签生成和偏序结构的图像层级分类
摘要:智能电子设备和互联网的普及,使得图像数据爆炸性膨胀.为了有效管理复杂图像资源,提出一种基于加权语义邻近集和形式概念偏序结构的图像层级分类方法.首先,根据图像语义相关分数,对不同程度语义设定自适应权系数,从训练图库中构建加权语义邻近集,通过对语义邻近集中图像的词频分布进行判决,自动生成图像的多个 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02用户可动态撤销及数据可实时更新的云审计方案
摘要:随着云存储的出现,越来越多的用户选择将大量数据存储在远程云服务器上,以节约本地存储资源.如何验证用户远程存储在云端数据的完整性,成为近年来学术界的一个研究热点.虽然现已提出了很多云审计方案,但大多数方案都假设个人和企业在使用云存储系统的整个过程中,用户及其公私钥始终不变,且不能高效地对数据进行 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02大数据实时交互式分析
摘要:实时交互式分析针对多目标和多角度的分析任务,通过多轮次的用户-数据库交互过程,逐步明确分析任务与分析目标,全方位地了解相关领域信息,最终得到科学的、全面的分析结果.相比传统数据库“提交查询-返回结果”的单轮次交互查询方式,实时交互式分析更强调交互的实时性与查询结果的时效性.对实时交互式分析的研 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02