删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

学习式数据库系统:挑战与机遇

本站小编 Free考研考试/2022-01-02

摘要:通用的数据库系统为不同的应用需求与数据类型提供统一的处理方式,在取得了巨大成功的同时,也暴露了一定的局限性:由于没有结合具体应用的数据分布与工作负载,系统往往难以保证性能的最优.为了解决这一问题,"学习式数据库系统"成为了目前数据库领域的研究热点,它利用机器学习技术有效捕获负载与数据的特性,从而对数据库系统进行优化.围绕这一方向,近些年工业界与学术界涌现出了大量的研究工作.首先提出了细粒度的分类体系,从数据库架构出发,将现有工作进行了梳理;其次,系统地介绍了学习式数据库各组件的研究动机、基本思路与关键技术;最后,对学习式数据库系统未来的研究方向进行了展望.



Abstract:Modern database systems provide a general design principle for various data types and application workloads. While gaining great success in the last decades, the principle has a limitation that a database system may not achieve superior performance, if the system cannot be "customized" to the specific data distributions and workload characteristics. To address the problem, learnable database systems have attracted much attention from both industrial and academic communities, with a novel idea of using machine learning to optimize database systems. Along with this direction, extensive efforts have been done very recently to advance the field of learnable database systems. This survey systematically reviews the existing studies from the perspective of database system architecture. A fine-grained taxonomy is provided by categorizing the existing works by their target learnable database components. To help readers better understand each type of learnable components their motivations are presented, demonstrating the insights and introducing the key techniques. Finally, a number of promising future research directions are outlined of learnable database systems.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5908
相关话题/数据库 系统 工作 数据 技术

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 轩辕:AI原生数据库系统
    摘要:大数据时代下,数据库系统主要面临3个方面的挑战:首先,基于专家经验的传统优化技术(如代价估计、连接顺序选择、参数调优)已经不能满足异构数据、海量应用和大规模用户对性能的需求,可以设计基于学习的数据库优化技术,使数据库更智能;其次,AI时代,很多数据库应用需要使用人工智能算法,如数据库中的图像搜 ...
    本站小编 Free考研考试 2022-01-02
  • 数据集成方法发展与展望
    摘要:数据集成在数据管理与分析领域起着重要的作用.尽管从学术界首次提出并开始研究数据集成问题已经过去30多年,但在各个领域仍然存在着大量与数据集成问题密切相关的问题亟待解决.对数据集成领域从2001年开始到现在相关工作的发展脉络进行了梳理与总结.通过追踪数据集成方法的发展轨迹,不仅可以了解前人在解决 ...
    本站小编 Free考研考试 2022-01-02
  • 数据标注研究综述
    摘要:数据标注是大部分人工智能算法得以有效运行的关键环节.数据标注越准确、标注的数据量越大,算法的性能就越好.数据标注行业的发展带动了中国许多城市和城镇的就业,促使中国逐渐成为世界数据标注的中心.阐述了数据标注的发展概况,包括起源、应用场景、分类和任务;列举了目前常用的标注数据集、开源的数据标注工具 ...
    本站小编 Free考研考试 2022-01-02
  • 基于符号语义的不完整数据聚集查询处理算法
    摘要:研究了基于符号语义的不完整数据聚集查询处理问题.不完整数据又称为缺失数据,缺失值包括可填充的和不可填充的两种类型.现有的缺失值填充算法不能保证填充后查询结果的准确度,为此,给出了不完整数据聚集查询结果的区间估计.在符号语义中扩展了传统关系数据库模型,提出了一种通用不完整数据库模型.该模型可以处 ...
    本站小编 Free考研考试 2022-01-02
  • 用户可动态撤销及数据可实时更新的云审计方案
    摘要:随着云存储的出现,越来越多的用户选择将大量数据存储在远程云服务器上,以节约本地存储资源.如何验证用户远程存储在云端数据的完整性,成为近年来学术界的一个研究热点.虽然现已提出了很多云审计方案,但大多数方案都假设个人和企业在使用云存储系统的整个过程中,用户及其公私钥始终不变,且不能高效地对数据进行 ...
    本站小编 Free考研考试 2022-01-02
  • 对抗样本生成技术综述
    摘要:如今,深度学习已被广泛应用于图像分类和图像识别的问题中,取得了令人满意的实际效果,成为许多人工智能应用的关键所在.在对于模型准确率的不断探究中,研究人员在近期提出了“对抗样本”这一概念.通过在原有样本中添加微小扰动的方法,成功地大幅度降低原有分类深度模型的准确率,实现了对于深度学习的对抗目的, ...
    本站小编 Free考研考试 2022-01-02
  • 大数据实时交互式分析
    摘要:实时交互式分析针对多目标和多角度的分析任务,通过多轮次的用户-数据库交互过程,逐步明确分析任务与分析目标,全方位地了解相关领域信息,最终得到科学的、全面的分析结果.相比传统数据库“提交查询-返回结果”的单轮次交互查询方式,实时交互式分析更强调交互的实时性与查询结果的时效性.对实时交互式分析的研 ...
    本站小编 Free考研考试 2022-01-02
  • HDFS 存储和优化技术研究综述
    摘要:HDFS(Hadoopdistributedfilesystem)作为面向数据追加和读取优化的开源分布式文件系统,具备可移植、高容错和可大规模水平扩展的特性.经过10余年的发展,HDFS已经广泛应用于大数据的存储.作为存储海量数据的底层平台,HDFS存储了海量的结构化和非结构化数据,支撑着复杂 ...
    本站小编 Free考研考试 2022-01-02
  • 一种面向中小规模数据集的模糊分类方法
    摘要:虽然Takagi-Sugeno-Kang(TSK)模糊分类器在一些重要场合已经取得了广泛应用,但如何提高其分类性能和增强其可解释性,仍然是目前的研究热点.提出一种随机划分与组合特征且规则具有高可解释性的深度TSK模糊分类器(RCC-DTSK-C),但和其他分类器构造不同的是:(1)RCC-DT ...
    本站小编 Free考研考试 2022-01-02
  • 基于模型学习的OpenVPN系统脆弱性分析
    摘要:OpenVPN在现实网络中有广泛应用,对其安全性进行评估具有重要的现实意义.基于自动机理论中模型学习的方法,利用协议状态模糊测试的技术对OpenVPN系统进行黑盒测试分析,自动化推演出目标OpenVPN系统的状态机.提出了状态机时间压缩模型并进行冗余状态和迁移化简,可以准确得到协议状态机中的行 ...
    本站小编 Free考研考试 2022-01-02