删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一种面向中小规模数据集的模糊分类方法

本站小编 Free考研考试/2022-01-02

摘要:虽然Takagi-Sugeno-Kang (TSK)模糊分类器在一些重要场合已经取得了广泛应用,但如何提高其分类性能和增强其可解释性,仍然是目前的研究热点.提出一种随机划分与组合特征且规则具有高可解释性的深度TSK模糊分类器(RCC-DTSK-C),但和其他分类器构造不同的是:(1) RCC-DTSK-C由很多基训练单元构成,这些基训练单元可以被独立训练;(2)每一个基训练单元的隐含层通过模糊规则的可解释性来表达,而这些模糊规则又是通过随机划分、随机组合来进行特征选择的;(3)基于栈式结构理论,源数据集作为相同的输入空间被映射到每一个独立的基训练单元中,这样就有效地保证了源数据的所有特征在每一个独立的训练单元中都得以保留.实验结果表明,RCC-DTSK-C具有良好的分类性能和可解释性.



Abstract:Although Takagi-Sugeno-Kang (TSK) is widely used in practically every profession, how to enhance its classification accuracy and interpretability is still a research focus. In this study, a deep TSK fuzzy classifier is proposed. This classifier (i.e., RCC-DTSK-C) can randomly select features and combine features and own triplely concise interpretability for fuzzy rules. There are several other varieties of RCC-DTSK-C such as reasonable structure for rule representation, namely, (1) the proposed RCC-DTSK-C consists of many base-training units and each base-training unit can be trained independently. According to the principle of stacked generalization, the input of the next base-training unit consists of the training set and random result obtained from random projections about prediction results of current base-training unit. (2) In RCC-DTSK-C, the hidden layer of each base-training unit is represented by triplely concise interpretable fuzzy rules which are in the sense of randomly selected features. These features are selected by dividing into the not-fixed several fuzzy partitions and randomly combining rules and keeping the same input space in every base-training unit. (3) The source data set is mapped into each of the independent base-training units as the same input space, which effectively ensures that all the features of the source data are preserved in each separate training unit. The extensive experimental results show RCC-DTSK-C can achieve the enhanced classification performance and triplely concise interpretability for fuzzy rules.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5590
相关话题/数据 实验 空间 结构 解释性

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于代码结构知识的软件文档语义搜索方法
    摘要:自然语言文本形式的文档是软件项目的重要组成部分.如何帮助开发者在大量文档中进行高效、准确的信息定位,是软件复用领域中的一个重要研究问题.提出了一种基于代码结构知识的软件文档语义搜索方法.该方法从软件项目的源代码中解析出代码结构图,并以此作为领域特定的知识来帮助机器理解自然语言文本的语义.这一语 ...
    本站小编 Free考研考试 2022-01-02
  • 联合Laplacian正则项和特征自适应的数据聚类算法
    摘要:在信息爆炸时代,大数据处理已成为当前国内外热点研究方向之一.谱分析型算法因其特有的性能而获得了广泛的应用,然而受维数灾难影响,主流的谱分析法对高维数据的处理仍是一个极具挑战的问题.提出一种兼顾维数特征优选和图Laplacian约束的聚类模型,即联合拉普拉斯正则项和自适应特征学习(jointLa ...
    本站小编 Free考研考试 2022-01-02
  • 使用共享变量分析和约束求解检测安卓应用数据竞争
    摘要:安卓系统在移动端操作系统始终占据主导地位,在增强用户体验和提高程序性能的同时,其特有的事件驱动模型和多线程模型也造成了并发缺陷.并发程序中,线程调度的不确定性和难以再现性是并发缺陷检测困难的原因.现有技术主要在动态生成执行路径的基础上进行发生序(happens-before)分析,进而检测安卓 ...
    本站小编 Free考研考试 2022-01-02
  • 基于噪声数据与干净数据的深度置信网络
    摘要:建立以受限玻尔兹曼机(restrictedBoltzmannmachine,简称RBM)为基石的深度网络模型,是深度学习研究的热点领域之一.Point-wiseGated受限玻尔兹曼机(point-wisegatedRBM,简称pgRBM)是一种RBM的变种算法.该算法能够在含噪声的数据中自适 ...
    本站小编 Free考研考试 2022-01-02
  • 分布式数据库下基于剪枝的并行合并连接策略
    摘要:排序合并连接是数据库系统一种重要的连接实现方式,比哈希连接有更广泛的应用.分布式环境下,数据分片、分布存储,面对昂贵的网络代价,进行高效排序合并连接的挑战巨大.传统策略首先针对连接数据进行排序,然后基于排好序的数据执行合并连接.这两部分操作均基于原始数据进行操作,通常情况下,原始连接数据存在无 ...
    本站小编 Free考研考试 2022-01-02
  • 基于空间特征分区和前点约束的WKNN室内定位方法
    摘要:高精度室内定位有着广阔的市场前景.针对传统的WKNN室内定位方法所面临的在处理面积较大目标区域时,位置估计结果跳动跨度较大、精度不高等问题,提出了一种基于空间特征分区和前点约束的WKNN室内定位方法.该方法通过将面积较大的目标区域按其空间特征划分为多个分区,解决了指纹数据库无法实现全域覆盖的问 ...
    本站小编 Free考研考试 2022-01-02
  • 多用户眼动跟踪数据的可视化共享与协同交互
    摘要:随着数字图像处理技术的发展,以及计算机支持的协同工作研究的深入,眼动跟踪开始应用于多用户协同交互.但是已有的眼动跟踪技术主要针对单个用户,多用户眼动跟踪计算架构不成熟、标定过程复杂,眼动跟踪数据的记录、传输以及可视化共享机制都有待深入研究.为此,建立了基于梯度优化的协同标定模型,简化多用户的眼 ...
    本站小编 Free考研考试 2022-01-02
  • 面向比特币交易网络的拓扑结构可视探索方法
    摘要:分析比特币交易网络有助于人们理解交易者在比特币交易中的交易模式.比特币交易网络的匿名性和其巨大的规模使得用户很难在分析前对整个交易网络产生大致的认知.提出了一种基于拓扑结构推荐的比特币交易网络可视分析方法.核心思想是为每个节点生成一个向量化表达,在用户交互的基础上,所提算法即可检测一系列相似的 ...
    本站小编 Free考研考试 2022-01-02
  • 区块链数据管理专题前言
    摘要:近几十年来,数据管理技术取得了飞速发展并在很多重要领域广泛应用.传统的数据库管理系统(包括分布式数据库)往往由单一机构进行管理和维护,该机构对整个数据库具有最高权限.这种模式并不适用于由非完全互信的多个机构共同管理数据,在互联网应用环境中该问题尤为突出.区块链作为一种去中心化、不可篡改、可追溯 ...
    本站小编 Free考研考试 2022-01-02
  • 基于区块链的档案数据保护与共享方法
    摘要:针对现有档案数据管理中普遍存在的数据中心化存储、安全性差和防篡改性弱等问题,提出一种基于区块链的档案数据保护与共享方法:通过智能合约和数字签名技术,实现了数字档案馆的身份认证和档案所有权的确定;通过智能合约和星际文件系统(IPFS)等技术,实现了数字档案的保护、验证、恢复与共享;通过公有链与联 ...
    本站小编 Free考研考试 2022-01-02