摘要:云渲染技术已被广泛应用于影视和动漫等行业.与传统的渲染农场和租赁市场模式不同,云渲染系统依托云计算基础设施提供多种软件服务进行渲染作业的方式,正逐渐成为新兴的计算模式.由于任务执行和资源操作等作业调度对于用户而言是透明的,这要求云渲染系统应具备智能化以实现计算资源优化调度和多端任务管理,并对系统可靠性提出了更高要求.针对这一问题,提出了采用概率模型检验对云渲染系统任务调度进行定量评估.首先,考虑渲染服务失效等因素引发的随机系统异常和指令错误,如文件损坏和渲染任务超时等,提出了基于离散马尔可夫链(DTMC)的概率模型对云渲染系统的文件准备模块、资源请求模块、渲染任务执行模块进行形式化建模;其次,从服务质量属性角度提出了9类验证性质用于定义云渲染系统的可靠性,采用概率计算树逻辑(PCTL)描述检验性质公式并执行工具PRISM计算和验证渲染系统可靠性;最后,结合案例和实验证明了该方法的可行性和有效性,尤其是对改进前后云渲染系统进行定量检验,可用于指导如何进行失效恢复和任务切换.因此,该方法在一定程度上可提高云渲染系统的可靠性.
Abstract:Cloud rendering has been widely used as a new computing architecture for the industries of film, television and animation. However, it is different from traditional methods, such as the render farm and rental market, which can provide a variety of rendering software in the cloud to recede workloads based on cloud infrastructures. In general, task executions and resource operations of task scheduling are transparent to the user. This requires that the cloud rendering system should have the intelligent ability to perform the optimal resources scheduling and multi-terminal tasks management. Thus, the reliability of the cloud rendering system is a core research problem. To this end, the probabilistic model checking technology is employed to carry out the quantitative verification and performance evaluation of the cloud rendering process focusing on task scheduling. First, the rendering service failure will cause stochastic exceptions and instruction errors when cloud rendering is working, i.e., damaged files and task timeout. To this end, the DTMC-based probabilistic model is proposed to formalize the file preparation module, resource request module, and rendering task execution module. Second, considering QoS attributes, nine types of reliability property are introduced to quantitatively verify the cloud rendering system, based on which PCTL is used to describe the verification formula to execute the supporting tool PRISM. Finally, the feasibility and effectiveness of proposed method are demonstrated by case study and experiments, especially the performance of task scheduling can be guaranteed by system recovery and task switching according to the quantitative result generated from formal verifications. Therefore, the proposed method can improve the reliability of the cloud rendering system.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/5641
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于概率模型检验的云渲染任务调度定量验证
本站小编 Free考研考试/2022-01-02
相关话题/系统 计算 可靠性 检验 概率
移动边缘计算中资源受限的串行任务卸载策略
摘要:云计算和移动互联网的不断融合,促进了移动云计算的产生和发展,但是其难以满足终端应用对带宽和延迟的需求.移动边缘计算在靠近用户的网络边缘提供计算和存储能力,通过计算卸载,将终端任务迁移至边缘服务器上面执行,能够有效降低应用延迟和节约终端能耗.然而,目前针对移动边缘环境任务卸载的主要工作大多考虑单 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02持久化内存文件系统的磨损攻击与防御机制
摘要:近来出现诸多以非易失性存储器(non-volatilememory,简称NVM)作为存储设备的新型持久化内存文件系统,充分发掘NVM的低延迟和可按字节寻址等优点,优化文件访问的I/O栈和一致性机制,极大提升文件系统的性能.然而,现有持久化内存文件系统都没有考虑NVM写耐受度低的缺陷,极易导致N ...中科院软件研究所 本站小编 Free考研考试 2022-01-02系统软件构造与验证技术专题前言
摘要:Abstract:PDF全文下载地址:http://jos.org.cn/jos/article/pdf/5958 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02嵌入式实时操作系统内核混合代码的自动化验证框架
摘要:“如何构造高可信的软件系统”已成为学术界和工业界的研究热点.操作系统内核作为软件系统的基础组件,其安全可靠是构造高可信软件系统的重要环节.为了确保操作系统内核的安全可靠,将形式化方法引入到操作系统内核验证中,提出了一个自动化验证操作系统内核的框架.该验证框架包括:(1)分别对C语言程序和混合语 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02条件概率图产生式对抗网络
摘要:产生式对抗网络(generativeadversarialnetworks,简称GANs)可以生成逼真的图像,因此最近被广泛研究.值得注意的是,概率图生成对抗网络(graphical-GAN)将贝叶斯网络引入产生式对抗网络框架,以无监督的方式学习到数据的隐藏结构.提出了条件概率图生成对抗网络( ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向推荐系统的图卷积网络
摘要:图卷积网络是一种针对图信号的深度学习模型,由于具有强大的特征表征能力得到了广泛应用.推荐系统可视为图信号的链接预测问题,因此近年来提出了使用图卷积网络解决推荐问题的方法.推荐系统中存在用户与商品间的异质顶点交互和用户(或商品)内部的同质顶点交互,然而,现有方法中的图卷积操作要么仅在异质顶点间进 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02人工智能赋能的数据管理、分析与系统专刊前言
摘要:大数据时代,数据规模庞大,数据管理应用场景复杂,传统数据库和数据管理技术面临很大的挑战.人工智能技术因其强大的学习、推理、规划能力,为数据库系统提供了新的发展机遇.专刊强调数据管理与人工智能的深度融合,研究人工智能赋能的数据库新技术和新型系统,包括两方面:(1)传统数据管理、数据分析技术及系统 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02轩辕:AI原生数据库系统
摘要:大数据时代下,数据库系统主要面临3个方面的挑战:首先,基于专家经验的传统优化技术(如代价估计、连接顺序选择、参数调优)已经不能满足异构数据、海量应用和大规模用户对性能的需求,可以设计基于学习的数据库优化技术,使数据库更智能;其次,AI时代,很多数据库应用需要使用人工智能算法,如数据库中的图像搜 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02学习式数据库系统:挑战与机遇
摘要:通用的数据库系统为不同的应用需求与数据类型提供统一的处理方式,在取得了巨大成功的同时,也暴露了一定的局限性:由于没有结合具体应用的数据分布与工作负载,系统往往难以保证性能的最优.为了解决这一问题,"学习式数据库系统"成为了目前数据库领域的研究热点,它利用机器学习技术有效捕获负载与数据的特性,从 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02MAS环境中一种基于反馈可信度的多维信誉计算方法
摘要:在分布式体系结构的MAS(multi-agentsystem)中,Agent之间通过彼此的交互,协调完成共同的任务,但是由于没有中心化的管理权威可以依赖,导致对网络中Agent信誉信息进行判断存在一定的困难.传统的基于评价反馈的信誉评估方法存在反馈评价属性信息利用不足以及缺少确保反馈评价信息可 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02