摘要:众筹是一个新兴的互联网金融平台,项目的发起者可以通过使用互联网,征求大量平台用户的资金来资助他们的项目.但是由于众筹平台所具有的独特规则,只有在特定时间内收集了足够的资金,项目的筹资才会成功进行交易.为了防止项目发起者和投资者在可能失败的项目上浪费时间和精力,动态追踪众筹项目的筹资过程以及估算其融资成功概率便极为重要.然而,现有的一些工作既没有针对动态预测跟踪机制的研究,也没有考虑平台上的项目发起者和投资者之间的动态行为交互.为了解决这些问题,基于长短期记忆网络设计了一种新颖的动静态协同预测模型.该模型着重分析了用户行为,包括评论的情绪倾向以及融资过程中的动态增量信息,从而将融资项目与投资人之间的交互行为进行深度挖掘分析.首先,针对平台上的静态特征和动态用户行为数据,通过不同的Embedding方法得到他们的深度表征.在此基础上,进一步设计了基于注意力机制的协同预测模型,以便了解项目融资的时序信息对最终结果的影响程度.最后,在真实的众筹数据集上进行的大量实验结果表明,所提出的动静态表征预测方法相比其他预测方法更为有效.
Abstract:Crowdfunding is an emerging finance platform for creators to fund their efforts by soliciting relatively small contributions from a large number of individuals using the Internet. Due to the unique rules, a campaign succeeds in trading only when it collects adequate funds in a given time. To prevent creators and backers from wasting time and efforts on failing campaigns, dynamically estimating the success probability of a campaign is very important. However, existing crowdfunding systems neither have the mechanism of dynamic predictive tracking, nor consider the dynamic interaction between project sponsors and investors on the platform. To address these issues, a novel dynamic and static collaborative prediction model is designed based on long and short-term memory network. This model focuses on user behavior, including the emotional tendency of reviews and the dynamic incremental information in the financing process, so as to deeply mine and analyze the interaction between financing projects and investors. Firstly, for the static features and dynamic user behavior data on the platform, their deep characterization is obtained by different embedding methods. On this basis, a collaborative prediction model based on attention mechanism is further designed to understand the impact of timing information of project financing on the final results. Finally, experiments on real crowdfunding datasets show that the proposed dynamic and static representation prediction method is more effective than other prediction methods.
PDF全文下载地址:
http://jos.org.cn/jos/article/pdf/5921
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
基于动静态表征的众筹协同预测方法
本站小编 Free考研考试/2022-01-02
相关话题/互联网 数据 信息 设计 网络
条件概率图产生式对抗网络
摘要:产生式对抗网络(generativeadversarialnetworks,简称GANs)可以生成逼真的图像,因此最近被广泛研究.值得注意的是,概率图生成对抗网络(graphical-GAN)将贝叶斯网络引入产生式对抗网络框架,以无监督的方式学习到数据的隐藏结构.提出了条件概率图生成对抗网络( ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于带噪观测的远监督神经网络关系抽取
摘要:远监督关系抽取的最大优势是通过知识库和自然语言文本的自动对齐生成标记数据.这种简单的自动对齐机制在将人从繁重的样本标注工作中解放出来的同时,不可避免地会产生各种错误数据标记,进而影响构建高质量的关系抽取模型.针对远监督关系抽取任务中的标记噪声问题,提出"最终句子对齐的标签是基于某些未知因素所生 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于规则推理网络的分类模型
摘要:为了缓解神经网络的"黑盒子"机制引起的算法可解释性低的问题,基于使用证据推理算法的置信规则库推理方法(以下简称RIMER)提出了一个规则推理网络模型.该模型通过RIMER中的置信规则和推理机制提高网络的可解释性.首先证明了基于证据推理的推理函数是可偏导的,保证了算法的可行性;然后,给出了规则推 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向推荐系统的图卷积网络
摘要:图卷积网络是一种针对图信号的深度学习模型,由于具有强大的特征表征能力得到了广泛应用.推荐系统可视为图信号的链接预测问题,因此近年来提出了使用图卷积网络解决推荐问题的方法.推荐系统中存在用户与商品间的异质顶点交互和用户(或商品)内部的同质顶点交互,然而,现有方法中的图卷积操作要么仅在异质顶点间进 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向众包数据清洗的主动学习技术
摘要:传统方法多数采用机器学习算法对数据进行清洗.这些方法虽然能够解决部分问题,但存在计算难度大、缺乏充足的知识等局限性.近年来,随着众包平台的兴起,越来越多的研究将众包引入数据清洗过程,通过众包来提供机器学习所需要的知识.由于众包的有偿性,研究如何将机器学习算法与众包有效且低成本结合在一起是必要的 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向GPU平台的复杂网络core分解方法研究
摘要:在复杂网络理论中,core分解是一种最基本的度量网络节点"重要性"并分析核心子图的方法.Core分解广泛应用于社交网络的用户行为分析、复杂网络的可视化、大型软件的代码静态分析等应用.随着复杂网络的图数据规模和复杂性的增大,现有研究工作基于多核CPU环境设计core分解并行算法,由于CPU核数和 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02基于异构社交网络信息和内容信息的事件推荐
摘要:基于事件的社交网络使得事件推荐受到越来越多的关注.不同于其他推荐问题(如电影推荐等),事件推荐具有3类不同信息:用户构成的异构社交网络关系信息(在线社交网络和离线社交网络)、用户/事件的内容信息、用户对事件的隐式反馈信息.如何有效融合这些信息进行事件推荐是该领域****普遍关注的问题.提出一种 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02人工智能赋能的数据管理技术研究
摘要:大数据时代,数据规模庞大、数据管理应用场景复杂,传统数据库和数据管理技术面临很大的挑战.人工智能技术因其强大的学习、推理、规划能力,为数据库系统提供了新的发展机遇.人工智能赋能的数据库系统通过对数据分布、查询负载、性能表现等特征进行建模和学习,自动地进行查询负载预测、数据库配置参数调优、数据分 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02人工智能赋能的数据管理、分析与系统专刊前言
摘要:大数据时代,数据规模庞大,数据管理应用场景复杂,传统数据库和数据管理技术面临很大的挑战.人工智能技术因其强大的学习、推理、规划能力,为数据库系统提供了新的发展机遇.专刊强调数据管理与人工智能的深度融合,研究人工智能赋能的数据库新技术和新型系统,包括两方面:(1)传统数据管理、数据分析技术及系统 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02面向关系数据库的智能索引调优方法
摘要:数据库索引是关系数据库系统实现快速查询的有效方式之一.智能索引调优技术可以有效地对数据库实例进行索引调节,从而保持数据库高效的查询性能.现有的方法大多利用了数据库实例的查询日志,它们先从查询日志中得到候选索引,再利用人工设计的模型选择索引,从而调节索引.然而,从查询日志中产生出的候选索引可能并 ...中科院软件研究所 本站小编 Free考研考试 2022-01-02