删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一种基于最大公共子图的社交网络对齐方法

本站小编 Free考研考试/2022-01-02

摘要:随着Internet的普及,各类社交网络走进人们的视野,用户为满足不同的服务需求,往往不会局限于单一社交网络中,因此,跨社交网络环境下的用户识别问题成为研究者的热门话题.主要利用网络结构信息,针对社交网络对齐问题进行研究,主要包含以下研究点:首先,将网络对齐问题抽象为最大公共子图问题(α-MCS),并提出求解自适应参数α的方法,相比于传统的基于启发式定义参数α的方法,该方法可有效区分不同类型网络中匹配用户与非匹配用户;其次,为快速而准确地解决α-MCS,提出了基于最大公共子图的迭代式网络对齐算法MCS_INA(α-MCS based iterative network alignment algorithm),该算法每次迭代过程主要包含两个阶段.第1个阶段,分别在两个社交网络中选取各自的候选匹配用户,第2个阶段,针对候选匹配用户进行识别.相比于其他算法,MCS_INA时间代价低,且依据不同网络特征,通过参数估计,可保证较高的识别精度;最后,在真实数据集和合成数据集中验证了算法MCS_INA的有效性.



Abstract:With the popularization of Internet, plenty of social networks come into lives. To enjoy different services, users usually take part in multiple social networks simultaneously. Therefore, user identification across social networks has become a hot research topic. In this study, social network structure is used to solve the problem of network alignment. Firstly, the problem of network alignment is formalized as the problem of maximum common subgraph (α-MCS). A method is proposed to determine parameter α adaptively. Compared with the other heuristic methods on determiningα, the proposed method can distinguish matched users and unmatched users effectively on different kinds of social networks. Secondly, in order to fast answer α-MCS, algorithm MCS_INA (α-MCS based iterative network alignment algorithm) is proposed. MCS_INA mainly contains two steps in each iteration. In the first step, MCS_INA aims at selecting candidates in the two networks respectively. In the second step, a mapping algorithm is proposed to match candidates. Compared with other methods, MCS_INA has lower time complexity and higher identification accuracy on different networks. At last, experiments are conducted on real-world and synthetic datasets to demonstrate the effectiveness of the proposed algorithm MCS_INA.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5831
相关话题/网络 数据 公共 过程 结构

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于联盟链的物联网动态数据溯源机制
    摘要:物联网动态数据安全保护的重点是拒绝非授权用户的篡改,实现对物联网动态数据操作的过程留痕和追踪溯源.为解决大量物联网设备产生的动态数据安全存储与共享问题,建立了物联网动态数据存储安全问题的数学模型,提出了用于实现操作实体多维授权与动态数据存储的双联盟链结构,设计了基于验证节点列表的共识算法,给出 ...
    本站小编 Free考研考试 2022-01-02
  • 应用区块链的数据访问控制与共享模型
    摘要:数据已成为企业的重要资产.如何在企业内部对数据的访问权限进行有效控制、在企业之间安全共享数据一直是一个挑战.区块链中的分布式账本可以从某些方面解决上述问题,但是区块链所应用的非对称加密机制仅可进行一对一的安全传输,并不满足企业内部复杂的访问控制要求.提出一种应用区块链的数据访问控制与共享模型, ...
    本站小编 Free考研考试 2022-01-02
  • 基于重要度贡献的无标度网络节点评估方法
    摘要:针对无标度网络的节点重要度评估问题,通过分析节点的邻居数量与其邻居间的拓扑结构,得到节点的结构洞重要性指标,再融合相邻节点的K核重要性指标值来确定相邻节点间的重要度贡献,以此表征相邻节点的局部信息;在此基础上,再结合表征节点位置信息的节点自身的K核重要性,从而提出一种基于节点间重要度贡献关系来 ...
    本站小编 Free考研考试 2022-01-02
  • 软件定义网络的测量方法研究
    摘要:测量技术是状态监测、性能管理、安全防御等网络研究的基础,在网络研究领域具有重要地位.相较于传统网络,软件定义网络在标准性、开放性、透明性等方面的优势给网络测量研究带来了新的机遇.测量数据平面和测量控制平面的分离,启发了通用和灵活的测量架构的设计与实现;标准化的编程接口,使得测量任务可以快速地开 ...
    本站小编 Free考研考试 2022-01-02
  • 基于SOM神经网络的二阶变异体约简方法
    摘要:二阶变异测试通过向源程序中人工注入两个缺陷来模拟程序实际的复杂缺陷,在软件测试中具有重要意义.但由一阶变异体组合形成二阶变异体后数量会急剧增长,极大地增加了程序的执行开销.为了减少二阶变异体数量,降低程序的执行开销,提出一种基于SOM神经网络的二阶变异体约简方法.该方法首先采用较为全面的二阶变 ...
    本站小编 Free考研考试 2022-01-02
  • 基于本体推理的终端用户数据查询构造方法
    摘要:基于数据分析的智能决策对提升企业竞争力具有重要意义.根据待分析的问题,从内部信息系统的数据库中查询并获取与问题密切相关且信息完整的数据,是企业数据分析过程中的关键环节.基于本体的可视化数据查询系统为不掌握计算机专业技能的终端用户提供了高效获取数据的手段,近年来成为研究热点.然而现有工作仅采用简 ...
    本站小编 Free考研考试 2022-01-02
  • 软件开发活动数据的数据质量问题
    摘要:问题追踪系统和版本控制系统等软件开发支持工具已被广泛应用于开源和商业软件的开发中,产生了大量的数据,即软件开发活动数据.软件开发活动数据被广泛应用于科学研究和开发实践,为智能化开发提供支持.然而数据质量对相关的研究和实践有重大影响,却还没有得到足够的重视.为了能够更好地警示数据使用者潜在的数据 ...
    本站小编 Free考研考试 2022-01-02
  • 多媒体数据的知识关联与理解专题前言
    摘要:Abstract:PDF全文下载地址:http://jos.org.cn/jos/article/pdf/5668 ...
    本站小编 Free考研考试 2022-01-02
  • 基于区域敏感生成对抗网络的自动上妆算法
    摘要:自动上妆旨在通过计算机算法实现人脸妆容的编辑与合成,隶属于人脸图像分析领域.其在互动娱乐应用、图像视频编辑、辅助人脸识别等多方面起着重要作用.然而作为人脸编辑任务,其仍难以在保证图像的编辑结果自然、真实的同时又很好地满足编辑需求,并且仍有难以精确控制编辑区域、图像编辑前后一致性差、图像质量不够 ...
    本站小编 Free考研考试 2022-01-02
  • 基于小波域的深度残差网络图像超分辨率算法
    摘要:单幅图像超分辨率(SISR)是指从一张低分辨率图像重建高分辨率图像.传统的神经网络方法通常在图像的空间域进行超分辨率重构,但这些方法常在重构过程中忽略重要的细节.鉴于小波变换能够将图像内容的"粗略"和"细节"特征进行分离,提出一种基于小波域的深度残差网络(DRWSR).不同于其他传统的卷积神经 ...
    本站小编 Free考研考试 2022-01-02