删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于重要度贡献的无标度网络节点评估方法

本站小编 Free考研考试/2022-01-02

摘要:针对无标度网络的节点重要度评估问题,通过分析节点的邻居数量与其邻居间的拓扑结构,得到节点的结构洞重要性指标,再融合相邻节点的K核重要性指标值来确定相邻节点间的重要度贡献,以此表征相邻节点的局部信息;在此基础上,再结合表征节点位置信息的节点自身的K核重要性,从而提出一种基于节点间重要度贡献关系来评估无标度网络的节点重要度的方法.该方法综合考虑了节点的结构洞特征和K核中心性特征来确定节点的重要度,同时兼顾到了网络的局部和全局重要性.理论分析表明,此方法的时间复杂度仅为on2).与其他几种算法仿真对比的结果表明,该方法可行有效,拥有理想计算能力,适用无标度网络.



Abstract:In order to evaluate the importance of nodes in scale-free networks, by analyzing the number of neighboring nodes and the topology of its neighbors, the index of the structural holes importance of the node is obtained. At the same time, by combining the K core importance index of adjacent nodes, the importance contribution between adjacent nodes is obtained. It characterizes the local information of adjacent nodes. On this basis, combining with the K core importance of the node itself that characterizes the global location information of the node, this study proposes a method to evaluate the importance of nodes in scale-free networks based on the relationship of the importance contribution between nodes. This method takes into account the structural holes characteristics of nodes and the K core central feature to determine the importance contribution between adjacent nodes, and takes into account the local and global importance of the networks. The theoretical analysis shows that the time complexity of this method is only o(n2). Compared with other algorithms, the results show that the method is feasible and effective. It has an ideal computing capability, and is suitable for scale-free networks.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5422
相关话题/网络 结构 信息 指标 综合

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于SOM神经网络的二阶变异体约简方法
    摘要:二阶变异测试通过向源程序中人工注入两个缺陷来模拟程序实际的复杂缺陷,在软件测试中具有重要意义.但由一阶变异体组合形成二阶变异体后数量会急剧增长,极大地增加了程序的执行开销.为了减少二阶变异体数量,降低程序的执行开销,提出一种基于SOM神经网络的二阶变异体约简方法.该方法首先采用较为全面的二阶变 ...
    本站小编 Free考研考试 2022-01-02
  • 基于区域敏感生成对抗网络的自动上妆算法
    摘要:自动上妆旨在通过计算机算法实现人脸妆容的编辑与合成,隶属于人脸图像分析领域.其在互动娱乐应用、图像视频编辑、辅助人脸识别等多方面起着重要作用.然而作为人脸编辑任务,其仍难以在保证图像的编辑结果自然、真实的同时又很好地满足编辑需求,并且仍有难以精确控制编辑区域、图像编辑前后一致性差、图像质量不够 ...
    本站小编 Free考研考试 2022-01-02
  • 基于小波域的深度残差网络图像超分辨率算法
    摘要:单幅图像超分辨率(SISR)是指从一张低分辨率图像重建高分辨率图像.传统的神经网络方法通常在图像的空间域进行超分辨率重构,但这些方法常在重构过程中忽略重要的细节.鉴于小波变换能够将图像内容的"粗略"和"细节"特征进行分离,提出一种基于小波域的深度残差网络(DRWSR).不同于其他传统的卷积神经 ...
    本站小编 Free考研考试 2022-01-02
  • 基于节点向量表达的复杂网络社团划分算法
    摘要:社团结构划分对复杂网络研究在理论和实践上都非常重要.借鉴分布式词向量理论,提出一种基于节点向量表达的复杂网络社团划分方法(CDNEV).为了构建网络节点的分布式向量,提出启发式随机游走模型.利用节点启发式随机游走得到的节点序列作为上下文,采用SkipGram模型学习节点的分布式向量.选择局部度 ...
    本站小编 Free考研考试 2022-01-02
  • 基于多维灰色模型及神经网络的销售预测
    摘要:在时尚销售领域,如服饰、手袋、钱包等,准确的销售预测对企业非常重要.然而由于客户的需求受诸多因素的影响,要做到准确的销售预测一直是一个富有挑战性的问题.基于改进的多维灰色模型(GM(1,N))和神经网络(ANN)提出一种混合模型来预测销量,其中多维灰色模型对销售数据建模,神经网络对误差进行校正 ...
    本站小编 Free考研考试 2022-01-02
  • 社交网络下的不确定图隐私保护算法
    摘要:社交网络平台的快速普及使得社交网络中的个人隐私泄露问题愈发受到用户的关心,传统的数据隐私保护方法无法满足用户数量巨大、关系复杂的社交网络隐私保护需求.图修改技术是针对社交网络数据的隐私保护所提出的一系列隐私保护措施,其中不确定图是将确定图转化为概率图的一种隐私保护方法.主要研究了不确定图中边概 ...
    本站小编 Free考研考试 2022-01-02
  • IEEE 802.11 DCF机制下的异构网络业务分析模型
    摘要:在众多的IEEE802.11DCF机制分析模型中,集中分析了同质业务(例如数据包到达速率相同)网络的性能,仅有少量的文献聚焦于异构混合业务(饱和与非饱和工作模式同时存在)网络,而在目前的研究中,对网络的不饱和性及退避时隙冻结等问题归纳分析得并不准确.结合M/G/1排队模型,考虑了DCF机制的退 ...
    本站小编 Free考研考试 2022-01-02
  • 基于角色发现的动态信息网络结构演化分析
    摘要:动态信息网络是当前复杂网络领域中极具挑战的新问题之一,对其动态的演化过程进行研究,有助于分析网络结构、理解网络特性、发现网络中潜在的信息及演化规律,具有重要的理论意义与应用价值.基于网络结构本身量化表示的复杂性以及网络演化时序、复杂、多变的挑战,使用角色来量化动态网络的结构,并对模型进行分析, ...
    本站小编 Free考研考试 2022-01-02
  • 基于事件的社交网络上的双边偏好稳态规划
    摘要:在基于事件的社交网络中,一个经典的问题是为用户规划其感兴趣的事件.现有的工作仅仅考虑用户的喜好,仅从用户的角度出发,为其安排尽可能感兴趣的事件来参加.然而,从事件主办者的角度出发,他们亦希望为事件安排的用户尽可能有更大的影响力,用户的可靠性尽可能高,以保障事件能够顺利开展,并取得预期的效果.本 ...
    本站小编 Free考研考试 2022-01-02
  • 面向交通流量预测的多组件时空图卷积网络
    摘要:流量预测一直是交通领域研究者和实践者关注的热点问题.流量数据具有高度的非线性和复杂性,对其进行精准预测具有很大的挑战,现有的预测方法大多不能很好地捕获数据的时空相关性.提出一种新颖的基于深度学习的多组件时空图卷积网络(MCSTGCN),以解决交通流量预测问题.MCSTGCN通过3个组件分别建模 ...
    本站小编 Free考研考试 2022-01-02