删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于区域敏感生成对抗网络的自动上妆算法

本站小编 Free考研考试/2022-01-02

摘要:自动上妆旨在通过计算机算法实现人脸妆容的编辑与合成,隶属于人脸图像分析领域.其在互动娱乐应用、图像视频编辑、辅助人脸识别等多方面起着重要作用.然而作为人脸编辑任务,其仍难以在保证图像的编辑结果自然、真实的同时又很好地满足编辑需求,并且仍有难以精确控制编辑区域、图像编辑前后一致性差、图像质量不够精细等问题.针对以上难点,创新性地提出了一种掩模控制的自动上妆生成对抗网络,该网络利用掩模方法,能够重点编辑上妆区域,约束人脸妆容编辑中无需编辑的区域不变,保持主体信息.同时其又能单独编辑人脸的眼影、嘴唇、脸颊等局部区域,实现特定区域上妆,丰富了上妆功能.此外,该网络能够进行多数据集联合训练,除妆容数据集外,还可以使用其他人脸数据集作为辅助,增强模型的泛化能力,得到更加自然的上妆结果.最后,依据多种评价标准,进行了充分的定性及定量实验,并与目前的主流算法进行了对比,综合评价了所提方法的性能.



Abstract:Automatic makeup refers to the editing and synthesis of face makeup through computer algorithms. It belongs to the field of face image analysis, and plays an important role in interactive entertainment applications, image and video editing, and face recognition. However, as a face editing problem, it is still difficult to ensure that the editing result of the image is natural and satisfies the editing requirements. Makeup still has some difficulties such as precisely controlling the editing area is hard, the image consistency before and after editing is poor, and the image quality is insufficient. In response to these difficulties, this study innovatively proposes a mask-controlled automatic makeup generative adversarial network. Through a masking method, this network can edit the makeup area with emphasis, restrict the area that does not require editing, and maintain the key information. At the same time, it can separately edit the eye shadow, lips, cheeks, and other local areas of the face to achieve makeup on specific areas and enrich the makeup function. In addition, this network can be trained jointly on multiple datasets. In addition to makeup dataset, it can also use other face datasets as an aid to enhance the model's generalization ability and get a more natural makeup result. Finally, based on a variety of evaluation methods, more comprehensive qualitative and quantitative experiments are carried out, the results are compared with the other methods, and the performance of the proposed method is comprehensively evaluated.



PDF全文下载地址:

http://jos.org.cn/jos/article/pdf/5666
相关话题/图像 网络 控制 数据 自然

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于仿射不变离散哈希的遥感图像多目标分类
    摘要:遥感图像的多目标分类是一个具有挑战性的课题.首先,由于数据的复杂性以及算法对存储的高需求,传统分类方法很难兼顾到分类的精度和速度;其次,遥感成像过程中产生的仿射变换,使得目标的快速解译难以实现.为此,提出一种基于仿射不变离散哈希(AIDH)的遥感图像多目标分类方法.该方法采用具有低存储、高效率 ...
    本站小编 Free考研考试 2022-01-02
  • 基于小波域的深度残差网络图像超分辨率算法
    摘要:单幅图像超分辨率(SISR)是指从一张低分辨率图像重建高分辨率图像.传统的神经网络方法通常在图像的空间域进行超分辨率重构,但这些方法常在重构过程中忽略重要的细节.鉴于小波变换能够将图像内容的"粗略"和"细节"特征进行分离,提出一种基于小波域的深度残差网络(DRWSR).不同于其他传统的卷积神经 ...
    本站小编 Free考研考试 2022-01-02
  • 基于节点向量表达的复杂网络社团划分算法
    摘要:社团结构划分对复杂网络研究在理论和实践上都非常重要.借鉴分布式词向量理论,提出一种基于节点向量表达的复杂网络社团划分方法(CDNEV).为了构建网络节点的分布式向量,提出启发式随机游走模型.利用节点启发式随机游走得到的节点序列作为上下文,采用SkipGram模型学习节点的分布式向量.选择局部度 ...
    本站小编 Free考研考试 2022-01-02
  • 基于多维灰色模型及神经网络的销售预测
    摘要:在时尚销售领域,如服饰、手袋、钱包等,准确的销售预测对企业非常重要.然而由于客户的需求受诸多因素的影响,要做到准确的销售预测一直是一个富有挑战性的问题.基于改进的多维灰色模型(GM(1,N))和神经网络(ANN)提出一种混合模型来预测销量,其中多维灰色模型对销售数据建模,神经网络对误差进行校正 ...
    本站小编 Free考研考试 2022-01-02
  • 分布式多数据流频繁伴随模式挖掘
    摘要:多数据流频繁伴随模式是指一组对象较短时间内在同一个数据流上伴随出现,并在之后一段时间以同样方式出现在其他多个数据流上.现实生活中,城市交通监控系统中的伴随车辆发现、基于签到数据的伴随人群发现、基于社交网络数据中的高频伴随词组发现热点事件等应用都可以归结为多数据流频繁伴随模式发现问题.由于数据流 ...
    本站小编 Free考研考试 2022-01-02
  • 社交网络下的不确定图隐私保护算法
    摘要:社交网络平台的快速普及使得社交网络中的个人隐私泄露问题愈发受到用户的关心,传统的数据隐私保护方法无法满足用户数量巨大、关系复杂的社交网络隐私保护需求.图修改技术是针对社交网络数据的隐私保护所提出的一系列隐私保护措施,其中不确定图是将确定图转化为概率图的一种隐私保护方法.主要研究了不确定图中边概 ...
    本站小编 Free考研考试 2022-01-02
  • IEEE 802.11 DCF机制下的异构网络业务分析模型
    摘要:在众多的IEEE802.11DCF机制分析模型中,集中分析了同质业务(例如数据包到达速率相同)网络的性能,仅有少量的文献聚焦于异构混合业务(饱和与非饱和工作模式同时存在)网络,而在目前的研究中,对网络的不饱和性及退避时隙冻结等问题归纳分析得并不准确.结合M/G/1排队模型,考虑了DCF机制的退 ...
    本站小编 Free考研考试 2022-01-02
  • 圆周特征描述:有效的叶片图像分类和检索方法
    摘要:叶片图像的识别是计算机视觉的一个重要应用,其关键问题是如何对其进行有效的描述.提出了一种圆周特征描述方法.该方法用圆心在轮廓线上的圆与轮廓线和叶片形状区域分别相交所得到的圆心角、区域点的空间分布和灰度统计,分别表征叶片的轮廓、形状区域和灰度信息这3类特征,称其为叶片图像的圆周特征描述.通过改变 ...
    本站小编 Free考研考试 2022-01-02
  • 智能数据管理与分析技术专刊前言
    摘要:数据管理与智能计算的深度融合已经成为大数据时代顺利前行的迫切需求.智能数据管理旨在“为数据增添智能”,是数据科学与技术的重要基石,更是大数据产业蓬勃发展的关键支撑.一方面,将新一代人工智能方法应用于先进数据管理技术,尝试探索和突破智能数据管理与分析的理论体系、技术方法及系统平台,已经成为数据管 ...
    本站小编 Free考研考试 2022-01-02
  • 大规模RDF图数据上高效率分布式查询处理
    摘要:知识图谱是智能数据的主要表现形式,随着知识图谱领域的不断发展,大量的智能图数据以资源描述框架(resourcedescriptionframework,简称RDF)形式发布出来.RDF图上的SPARQL查询语义对应于图同态,是一个NP-完全问题.因此,如何使用分布式方法在大规模RDF图上有效回 ...
    本站小编 Free考研考试 2022-01-02