1 天津医科大学 基础医学院,天津 300070;
2 国家蛋白质科学中心 北京蛋白质组研究中心 蛋白质组学国家重点实验室 放射与辐射医学研究所,北京 102206;
3 天津大学 生命科学学院,天津 300072
收稿日期:2017-09-15;接收日期:2017-11-07; 网络出版时间:2017-11-21 基金项目:国家重点研发计划(No. 2016YFA0501302),国家自然科学基金(No. 21675006)资助
摘要:神经肽在参与调控人体各种生理功能上发挥着重要的作用,如痛觉、睡眠、情绪、学习与记忆等生理活动都受到神经肽的影响。神经肽主要存在于机体的神经组织内,其他体液和器官中也有少量的分布。目前对全脑组织神经肽高通量鉴定的研究仍不足,高通量检测这些神经肽对了解神经肽的组成和功能具有重要的意义。本研究通过对小鼠全脑组织内源性肽段的萃取,运用液相串联质谱(LC-MS/MS)技术对全脑组织的神经肽进行检测,共鉴定到1 830条内源性肽段和99条预测神经肽肽段。这些内源性肽段的鉴定在疾病的治疗和机制研究以及药物的研发方面提供了参考价值,也为研究新的神经肽及其功能奠定了基础。
关键词:神经肽 全脑组织 高通量鉴定 内源性肽段 液相串联质谱
Identification of mouse brain neuropeptides by high throughput mass spectrometry
Xianfeng Shao1,2, Min Ma2,3, Ruibing Chen1, Chenxi Jia2
1 School of Basic Medicine, Tianjin Medical University, Tianjin 300070, China;
2 Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing, Beijing 102206, China;
3 School of Life Sciences, Tianjin University, Tianjin 300072, China
Received: September 15, 2017; Accepted: November 7, 2017; Published: November 21, 2017
Supported by: National Key Research and Development Program of China (No. 2016YFA0501302), National Natural Science Foundation of China (No. 21675006)
Corresponding author:Ruibing Chen. E-mail: chenruibing@tijmu.edu.cn
Chenxi Jia. E-mail: cjia@mail.ncpsb.org
Abstract: Neuropeptides play an important role in the physiological functions of the human body. The physiological activities such as pain, sleep, mood, learning and memory are affected by neuropeptides. Neuropeptides mainly exist in the nerve tissue of the body, and a small amount of them are distributed in body fluid and organs. At present, analysis of large-scale identification of neuropeptides in whole brain tissue is still challenging. Therefore, high-throughput detection of these neuropeptides is greatly significant to understand the composition and function of neuropeptides. In this study, 1 830 endogenous peptides and 99 novel putative neuropeptides were identified by extraction of endogenous peptides from whole brain tissue of mice by liquid phase tandem mass spectrometry (LC-MS / MS). The identification of these endogenous peptides provides not only a reference value in the treatment and mechanism studies of diseases and the development of drugs, but also the basis for the study of a new neuropeptides and their functions.
Key words: neuropeptides whole brain tissue high-throughput detection endogenous peptides LC-MS/MS
神经肽是来源于大脑中的多肽荷尔蒙,长度多为10?30个氨基酸,广泛存在于脑组织、体液以及多个内脏器官中。在体内经过前体的多步酶切和翻译后修饰后获得生物活性。神经肽能调节体内多种信号通路,这些通路影响着不同的生理、行为和内分泌功能,如能量代谢的稳定、疼痛以及精神紊乱等。在血液、脑脊液、尿液等人体体液中,由于各种体液成分较复杂,尤其血液中血浆蛋白的存在导致针对体液的神经肽测定较为困难,内脏器官的神经肽含量又较低,因此针对全脑神经肽的提取和鉴定更具有意义。
近年来高灵敏度和高分辨率的液相串联质谱技术发展较为迅速,以Orbitrap Fusion为代表的质谱仪器,实现了将三重四极杆、静电场轨道阱、线性离子阱3种质量分析器融为一体。与免疫共沉淀、Western blotting等传统方法相比,液相串联质谱技术在神经肽的深入研究上更为便利和高效[1-3]。目前对神经肽的研究多集中在疾病相关神经肽的定量上[4-6],但这些研究多局限在单个或者少数神经肽[7-9]。而针对全脑神经肽的非限定性研究,能为相关研究提供对照,更能获取神经系统相关疾病的信息,如药物靶点[10]、神经肽间相互作用等。
由于对全脑神经肽的大规模鉴定的报道较少,阻碍了对神经肽及其受体和下游传导通路的研究。本研究利用酸化甲醇,沉淀和去除样品中的大分子量蛋白。通过研磨破碎的方式萃取小鼠全脑组织神经肽,利用液相串联质谱技术对全脑组织的神经肽进行大规模检测。比较内源性肽段的鉴定数与最大分子量,评估分子超滤管对样品制备的影响。对不同神经肽数据库进行优化,并对新神经肽进行预测,从而为神经肽的下游研究提供参考信息。
1 材料与方法1.1 小鼠全脑组织标本的采集8周龄SPF级C57BL/6雄性小鼠(30–40 g),由北京维通利华实验动物技术有限公司提供。所有小鼠均饲养在室温为(22±1) ℃、湿度为65%?70%的条件下,并使用标准实验动物饮食进行饲养。为了减少各种操作和生物节律引起的神经肽的变化,所有小鼠稳定饲养1周后,于上午9点使用CO2处死,并在5 min内取出全部脑组织。用冰的PBS冲洗3次后,立即微波加热使蛋白酶变性失活,微波功率750 W,加热30 s,加热后放入液氮中用于临时保存。全部脑组织取出后放入–80 ℃保存或者用于样品的直接制备。
1.2 神经肽的提取分2组实验进行神经肽的萃取,每组3个生物学重复(图 1)。①M (Methanol)组:单个脑组织加入l mL酸化甲醇(90%甲醇,1%乙酸,体积比),冰上进行组织研磨破碎,萃取液超声振荡2 min后,4 ℃、20 000 × g离心10 min,取上清液,室温蒸干,0.1%体积甲酸水重悬样品后,4 ℃、20 000 × g离心10 min,取1/2体积上清液,经过C18除盐柱(Agilent,USA)除盐,45%乙腈(45%乙腈,0.1%甲酸,体积比)洗脱,洗脱液蒸干上质谱或者–80 ℃保存备用;②MF (Methanol & Filter)组:单个脑组织加入l mL酸化甲醇研磨,超声振荡,离心取上清液,蒸干。超纯水平衡30 kDa超滤离心管(Millipore,UFC5030BK,USA),室温14 000 × g离心8 min,重复3次。0.1%体积甲酸水重悬样品后,离心、取上清液,加入平衡好的超滤离心管中,4 ℃、14 000 × g离心40 min,样品全部过滤后,加入200 μL 0.1%甲酸水再次离心30 min,取1/2体积收集液除盐、洗脱、蒸干后用质谱检测或者备用。
图 1 小鼠全脑神经肽的提取流程 Figure 1 The extraction process of mouse total cerebral neuropeptides. |
图选项 |
1.3 LC-MS/MS的设定液相Thermo EASY-nLC1200 (Thermo Fisher Scientific,Bremen,Germany)的参数:将萃取的神经肽用20 μL 0.1%体积甲酸水重悬,并测浓度。将700 ng样品载入到自制C18填料(直径3 μm,孔径120 ) (SunChrom, USA)填充的反向树脂捕集柱上。用不同梯度B相(0.1%甲酸溶于80%乙腈,体积比)洗脱捕集柱,洗脱的肽段经过自制C18填料填充的分析柱后(内径75 mm,长度15 cm),进入质谱检测。液相梯度:0 min-7% B相,14 min-13% B相,51 min-23% B相,68 min-36% B相,69 min-100% B相,75 min-100% B相,流速均为600 nL/min。
质谱Thermo orbitrapfusion (Thermo Fisher Scientific,Bremen,Germany)的参数:一级检测器类型为轨道阱,分辨率120 000,自动增益控制目标5.0 e5,最大注入时间50 ms,扫描范围300?1 400 m/z。二级检测器类型为离子阱,采用三重四级杆的分离模式,碎裂模式为高能碰撞解离,自动增益控制目标2.0 e5,最大注入时间35 ms,分离窗1.6 m/z,初始质量120 m/z,碎裂能量30%,动态排除时间18 s,电荷排除+1,> +6价。
2 数据的处理所有质谱原始数据均使用PEAKS Studio软件(Version8.5)先进行肽段的从头测序[11],再进行依赖数据库的搜库。搜库设置:前体质量最大偏差10 Da,碎片离子偏差在0.2 Da以内,肽段FDR≤1%且–10 logP≥20,无酶切,动态修饰包括:Amidation;Oxidation (M);Phosphorylation (STY);Acetylation (K),每条肽段最多允许存在2个动态修饰。数据库来源:(1)神经肽鉴定的数据库swepep peptides[12] (http://www.swepep.org/);neuropedia[13] (http://proteomics.ucsd.edu/Software/NeuroPedia/);neuropep[14] (http://isyslab.info/NeuroPep/)。(2)神经肽预测的数据库neuropred[15] (http://stagbeetle.animal.uiuc.edu/cgi-bin/neuropred.py);swepep predicted (http://www.swepep.org/)。(3)前体荷尔蒙数据库swepep precursors (http://www.swepep.org/)。
3 结果与分析3.1 数据库的优化为了建立更全面的神经肽鉴定数据库,针对MF的方法,对数据库(1)中3个数据库搜库的结果进行比较。swepep、neuropedia、neuropep分别鉴定到1 392、976、1 167条内源性肽段,相同氨基酸序列的肽段可能存在不同修饰和不同电荷情况,当去除不同修饰与电荷影响后,swepep库鉴定到的内源性肽段序列剩余1 269条(图 2),在3个神经肽鉴定数据库中最多,neuropedia库最少,剩余894条,neuropep库的鉴定数剩余1 070条。对不同数据库鉴定到的肽段重复率进行统计,swepep库与neuropedia库的重复率为67.5%,与neuropep库的重复率为71.2%,neuropedia库与swepep库的重复率为78.7%。每个数据库都含有其他数据库所鉴定不到的特异性肽段,这些特异性肽段以swepep库最多为279条,neuropep库最少,其12条特异性肽段来源于9个神经肽荷尔蒙前体:生长激素抑制素(Somatostatin)、脑啡肽B (Proenkephalin-B)、阿黑皮素(POMC)、速激肽1 (PPT)、缩胆囊素(CCK)、促甲状腺激素(Pro-TRH)、分泌粒蛋白2 (SCG2)、可卡因-苯丙胺调节转录蛋白(Cocaine-and amphetamine-regulated transcript protein)、胃泌素释放肽(GRP)。为了鉴定到更多的神经肽,包括每个数据库所特有的肽段,需要对3个数据库进行合并,使鉴定结果更为全面。
图 2 不同数据库鉴定到的内源性肽段数 Figure 2 The identification number of endogenous peptides by using different databases. |
图选项 |
3.2 不同制样方法的鉴定结果用合并的数据库对M、MF组数据进行搜库,并对搜库结果进行比较。2组样本分别鉴定到1 486、1 453条内源性肽段,去除同一肽段不同修饰和电荷影响后,2组各剩余1 361、1 326条内源性肽段序列(表 1)。肽段数量是以往报道的2–3倍,包括常见的速激肽:P物质(SP)、神经激肽B、神经肽K、神经肽Y (NPY);阿片肽:内啡肽、脑啡肽、强啡肽;血管活性肠肽(VIP)等神经肽。SP具有扩张血管并参与痛觉信息的传递的功能[16-17]。NPY能影响摄食行为,具有促进食欲、增加体重[18]、调节其他神经肽分泌的功能[19-20]。阿片肽具有较强的镇痛作用。VIP可以使血管舒张,降低血压。不同组内3个生物重复的皮尔森相关系数均大于0.76 (图 3A),单个样品的内源性肽段的平均鉴定数M组和MF组分别为993、895条(图 3B)。2种制样方法鉴定到的肽段的最大分子量均小于7 kDa,因此超滤管并不能显著降低鉴定到的内源性肽段的分子量。使用超滤管超滤样品时,部分样品会残留在滤膜上,同时在离心过程中,肽段聚积会出现阻塞滤膜孔现象,导致部分低于30 kDa的肽段也不能超滤下来。对于低丰度肽段的超滤,可能会造成难以避免的样品损失,因此在制备样品时不使用分子超滤管能显著提高单个样品的鉴定数。
表 1 两种样品制备方法的内源性肽段的鉴定Table 1 The identified endogenous peptides from two different sample preparation methods
Group | Identified peptides | Max mass | Amidation | Oxidation | Phosphorylation | Acetylation |
M | 1 486/1 361 | 6 979 | 72 | 47 | 82 | 71 |
MF | 1 453/1 326 | 6 194 | 77 | 58 | 79 | 79 |
表选项
图 3 皮尔森系数和内源性肽段的鉴定数 Figure 3 The Pearson coefficient and the number of identified endogenous peptides. M1–3: samples from the methanol group; MF1–3: samples from the methanol & filter group. (A) The Pearson coefficient among 6 samples. (B) The number of identified endogenous peptides of different samples. |
图选项 |
对2组样品的肽段重复率进行比较,结果显示M组与MF组重复率为64.1% (图 4A),每组特异性鉴定到的肽段M组较多有311条,包括血纤维蛋白肽B、生长抑素-14等神经肽,血纤维蛋白肽B能促进中性粒细胞和成纤维细胞的迁移[21],生长抑素-14具有抑制胰高血糖素分泌的功能[22]。MF组特异性肽段有276条,包括神经肽K (能抑制黄体生成素的释放[23])和强啡肽A (1-8) (具有镇痛的作用)。为了增加内源性肽段的鉴定数,将2组数据进行合并搜库,共得到1 830条内源性肽段序列,去除不同修饰和电荷影响后剩余1 653条。对1 653条肽段进行氨基酸长度的统计,长度在6–30个氨基酸的肽段占总肽段的95.6% (图 4B),其中11–15个氨基酸的肽段最多,有640条,占总鉴定数的38.7%。鉴定到的最短肽段含有5个氨基酸,最长肽段含有60个氨基酸,两者来源于相同的荷尔蒙前体SCG1。
图 4 内源性肽段的鉴定数及氨基酸的长度 Figure 4 The number of identified endogenous peptides and their amino acid length. (A) Recurrence rate of endogenous peptides between the M group and the MF group. (B) The amino acid lengths of peptides identified in 6 samples. |
图选项 |
3.3 前体荷尔蒙的鉴定不同的神经肽可能来源于不同的前体荷尔蒙,根据神经肽不同的断裂方式,前体可以作为预测新的神经肽的来源,如neuropred数据库[15]。用建立的荷尔蒙前体数据库(3)进行搜库,得到2 176条内源性肽段,去除修饰、电荷、同源序列影响后剩余1 941条。对不同荷尔蒙前体鉴定到的内源性肽段数进行统计,其中产生大于100个肽段的前体包括:SCG2、磷脂酰乙醇胺结合蛋白1 (PEBP-1)、SCG1、前体蛋白转化酶Ⅰ型抑制因子(ProSAAS) (图 5),4个前体的内源性肽段鉴定数占总鉴定数的49.5%,它们在信号传导、胰岛素的分泌、轴突生成、饮食行为、行为恐惧反应、抑制内皮细胞凋亡等方面发挥着重要的生理功能。
图 5 前体荷尔蒙的分布 Figure 5 The distribution of precursor hormones. SCG2: Secretogranin-2; PEBP1: phosphatidyle thanolamine-binding protein 1; PCSK1: prohormone convertase 1; PENK: proenkephalin-A; TYB4: thymosin beta-4; POMC: Pro-opiomelanocortin; 7B2: neuroendocrine protein 7B2; CCKN: cholecystokinin. |
图选项 |
3.4 对新神经肽的探索利用数据库(2)对2组数据进行搜库,为了减少假阳性,只保留与数据库(2)中氨基酸序列全部匹配的肽段,共鉴定到99条预测神经肽。最长预测神经肽含有42个氨基酸,来源于前体荷尔蒙SCG2;最短预测肽段含有6个氨基酸,来源于前体脑啡肽A。来源于荷尔蒙前体的预测神经肽(表 2),可能在功能上与前体蛋白较相似,如来源于VIP peptides的ISSSISEDPVPI序列,可能在mRNA的稳定、蛋白质分解、催乳素分泌与信号转导的调节等方面发挥着生理功能。但来源于同一前体的预测神经肽,如来源于脑啡肽A的YGGFMR序列和YGGFMRSL序列,也可能具有不同的生物功能。对于预测神经肽可以通过人工合成后的体内和体外实验验证其真实性。
表 2 部分预测肽段的信息Table 2 The information of several predictive peptides
Peptide sequences | –10 lg (P value) | Gene names | Protein names |
YGGFMR | 31.13 | PENK | Proenkephalin-A |
PKLKWDNQ | 43.40 | PDYN | Proenkephalin-B |
YGGFMRSL | 49.40 | PENK | Proenkephalin-A |
SEESQEREY | 56.07 | CHGB | Secretogranin-1 |
ISSSISEDPVPI | 40.25 | VIP | VIP peptides |
RPKPQQFFGLMG | 60.71 | TAC1 | Protachykinin-1 |
APGAMLQIEALQEVLKKL | 61.74 | CARTPT | Cocaine-and amphetamine-regulated transcript protein |
WSRMDQLAKELTAE | 59.79 | CHGA | Chromogranin-A |
ILTGSSEPEAAPAPR | 54.22 | PCSK1N | ProSAAS |
表选项
4 讨论本研究通过利用高灵敏度、高分辨率的液相串联质谱技术,对全脑神经肽进行了大规模的定性报道。采用差别制样的方法,比较分子滤过膜在样品鉴定数、常见的翻译后修饰、肽段最大分子量上的差异,并对神经肽数据库进行了优化,主要目的是为了鉴定到更多的全脑神经肽,并对新的神经肽候选物进行了预测,为后续神经肽相关的功能性研究提供参考,例如与焦虑抑郁相关的神经肽CRF、ACTH、UCN、AVP、VIP、CCK等的研究[24-26]。本研究中M组单个样品的平均鉴定数为993条,比MF组多98条,M组制样方法更适合于肽段的定性研究。不同的检测仪器同样能影响鉴定数,如文献中报道使用LTQ Orbitrap Discovery检测仪器时,单个样品内源性肽段鉴定数仅为500多条[27]。不同的神经肽数据库能鉴定到不同的特异性肽段[28],swepep、neuropedia、neuropep数据库鉴定到内源性肽段重复率低于80%,尤其swepep库与neuropedia库的重复率更低,因此对数据库进行合并也能提高样品的鉴定数。
对神经肽的翻译后修饰我们也做了相关统计,共鉴定到37种翻译后修饰,翻译后修饰的内源性肽段有612条。37种翻译后修饰中以酪氨酸、丝/苏氨酸的磷酸化最为常见,共125条占总修饰肽段的20.4%,其次是酰胺化作用,共110条占总修饰肽段的18.0%。磷酸化作用可能与神经肽的激活有关[29],从而影响自身或者其他神经肽的表达,酰胺化作用可能参与神经肽合成过程中的限速反应[30],也能影响神经肽的表达。
在全脑荷尔蒙前体的鉴定中,内源性肽段鉴定数最多的是SCG2,SCG2具有促进血管再生、抑制内皮细胞凋亡、正性趋化嗜酸性粒细胞的作用。同一前体在不同脑区的鉴定数可能差异较大,如相关报道中[28],SCG2、PENK在下丘脑中鉴定数分别为215、88条,与本研究中SCG2和PENK在全脑的鉴定数较接近,而在纹状体中SCG2、PENK的鉴定数分别为41、102条,这种差异可能与不同脑区的不同功能有关。利用预测库对全脑神经肽进行氨基酸序列的预测,有助于发现未注释的神经肽,如果能对预测神经肽进行功能研究,将会更具有意义。
参考文献
[1] | Sharma K, Schmitt S, Bergner CG, et al. Cell type-and brain region-resolved mouse brain proteome.Nat Neurosci, 2015, 18(12): 1819–1831.DOI: 10.1038/nn.4160 |
[2] | Petruzziello F, Falasca S, Andren PE, et al. Chronic nicotine treatment impacts the regulation of opioid and non-opioid peptides in the rat dorsal striatum.Mol Cell Proteomics, 2013, 12(6): 1553–1562.DOI: 10.1074/mcp.M112.024828 |
[3] | Che FY, Lim J, Pan H, et al. Quantitative neuropeptidomics of microwave-irradiated mouse brain and pituitary.Mol Cell Proteomics, 2005, 4(9): 1391–1405.DOI: 10.1074/mcp.T500010-MCP200 |
[4] | Chen RB, Xiao MM, Buchberger A, et al. Quantitative neuropeptidomics study of the effects of temperature change in the crab Cancer borealis.J Proteome Res, 2014, 13(12): 5767–5776.DOI: 10.1021/pr500742q |
[5] | Molina FA, Burrows NP, Jones RR, et al. Increased sensory neuropeptides in nodular prurigo: a quantitative immunohistochemical analysis.Br J Dermatol, 1992, 127(4): 344–351.DOI: 10.1111/bjd.1992.127.issue-4 |
[6] | Doughty SE, Atkinson ME, Shehab SAS. A quantitative study of neuropeptide immunoreactive cell bodies of primary afferent sensory neurons following rat sciatic nerve peripheral axotomy.Regul Pept, 1991, 35(1): 59–72.DOI: 10.1016/0167-0115(91)90254-E |
[7] | Gouardères C, Quelven I, Mollereau C, et al. Quantitative autoradiographic distribution of NPFF1 neuropeptide FF receptor in the rat brain and comparison with NPFF2 receptor by using[125I]YVP and[(125I]EYF as selective radioligands.Neuroscience, 2002, 115(2): 349–361.DOI: 10.1016/S0306-4522(02)00419-0 |
[8] | de Dreu CKW, Greer LL, Handgraaf MJJ, et al. The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans.Science, 2010, 328(5984): 1408–1411.DOI: 10.1126/science.1189047 |
[9] | Bo E, Farinetti A, Marraudino M, et al. Adult exposure to tributyltin affects hypothalamic neuropeptide Y, Y1 receptor distribution, and circulating leptin in mice.Andrology, 2016, 4(4): 723–734.DOI: 10.1111/andr.12222 |
[10] | H?kfelt T, Bartfai T, Bloom F. Neuropeptides: opportunities for drug discovery.Lancet Neurol, 2003, 2(8): 463–472.DOI: 10.1016/S1474-4422(03)00482-4 |
[11] | Ma B, Zhang KZ, Hendrie C, et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry.Rapid Commun Mass Spectrom, 2003, 17(20): 2337–2342.DOI: 10.1002/(ISSN)1097-0231 |
[12] | F?lth M, Sk?ld K, Svensson M, et al. Neuropeptidomics strategies for specific and sensitive identification of endogenous peptides.Mol Cell Proteomics, 2007, 6(7): 1188–1197.DOI: 10.1074/mcp.M700016-MCP200 |
[13] | Kim Y, Bark S, Hook V, et al. NeuroPedia: neuropeptide database and spectral library.Bioinformatics, 2011, 27(19): 2772–2773.DOI: 10.1093/bioinformatics/btr445 |
[14] | Wang Y, Wang MX, Yin SW, et al. NeuroPep: a comprehensive resource of neuropeptides.Database (Oxford), 2015, 2015: bav038.DOI: 10.1093/database/bav038 |
[15] | Southey BR, Amare A, Zimmerman TA, et al. NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides.Nucleic Acids Res, 2006, 34(S2): W267–W272. |
[16] | Lembeck F, Holzer P. Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation.Naunyn Schmiedebergs Arch Pharmacol, 1979, 310(2): 175–183.DOI: 10.1007/BF00500282 |
[17] | Yashpal K, Henry JL. Endorphins mediate overshoot of substance P-induced facilitation of a spinal nociceptive reflex.Can J Physiol Pharmacol, 1983, 61(4): 303–307.DOI: 10.1139/y83-046 |
[18] | Gehlert DR. Role of hypothalamic neuropeptide Y in feeding and obesity.Neuropeptides, 1999, 33(5): 329–338.DOI: 10.1054/npep.1999.0057 |
[19] | Porter DWF, Naylor AM, Mcneilly AS, et al. Endocrine actions of central neuropeptide Y in the ewe: activation of the hypothalamo-pituitary-adrenal axis by exogenous neuropeptide Y and role of endogenous neuropeptide Y in the secretion of luteinizing hormone during the oestrous cycle.J Neuroendocrinol, 1993, 5(2): 163–174.DOI: 10.1111/jne.1993.5.issue-2 |
[20] | Pau KYF, Khorram O, Kaynard AH, et al. Simultaneous induction of neuropeptide Y and gonadotropin-releasing hormone release in the rabbit hypothalamus.Neuroendocrinology, 1989, 49(2): 197–201.DOI: 10.1159/000125114 |
[21] | Senior RM, Skogen WF, Griffin GL, et al. Effects of fibrinogen derivatives upon the inflammatory response. Studies with human fibrinopeptide B.J Clin Invest, 1986, 77(3): 1014–1019.DOI: 10.1172/JCI112353 |
[22] | Mandarino L, Stenner D, Blanchard W, et al. Selective effects of somatostatin-14, -25 and -28 on in vitro insulin and glucagon secretion.Nature, 1981, 291(5810): 76–77.DOI: 10.1038/291076a0 |
[23] | Sahu A, Kalra SP. Effects of tachykinins on luteinizing hormone release in female rats: potent inhibitory action of neuropeptide K.Endocrinology, 1992, 130(3): 1571–1577. |
[24] | Kormos V, Gaszner B. Role of neuropeptides in anxiety, stress, and depression: from animals to humans.Neuropeptides, 2013, 47(6): 401–419.DOI: 10.1016/j.npep.2013.10.014 |
[25] | Rotzinger S, Lovejoy DA, Tan LA. Behavioral effects of neuropeptides in rodent models of depression and anxiety.Peptides, 2010, 31(4): 736–756.DOI: 10.1016/j.peptides.2009.12.015 |
[26] | Perry RH, Dockray GJ, Dimaline R, et al. Neuropeptides in Alzheimer's disease, depression and schizophrenia: a post mortem analysis of vasoactive intestinal peptide and cholecystokinin in cerebral cortex.J Neurol Sci, 1981, 51(3): 465–472.DOI: 10.1016/0022-510X(81)90123-4 |
[27] | Zhang XZ, Petruzziello F, Zani F, et al. High identification rates of endogenous neuropeptides from mouse brain.J Proteome Res, 2012, 11(5): 2819–2827.DOI: 10.1021/pr3001699 |
[28] | Frese CK, Boender AJ, Mohammed S, et al. Profiling of diet-induced neuropeptide changes in rat brain by quantitative mass spectrometry.Anal Chem, 2013, 85(9): 4594–4604.DOI: 10.1021/ac400232y |
[29] | Sarkar S, Lechan RM. Central administration of neuropeptide Y reduces α-melanocyte-stimulating hormone-induced cyclic adenosine 5′-monophosphate response element binding protein (CREB) phosphorylation in pro-thyrotropin-releasing hormone neurons and increases CREB phosphorylation in corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus.Endocrinology, 2003, 144(1): 281–291.DOI: 10.1210/en.2002-220675 |
[30] | Eipper BA, Stoffers DA, Mains RE. The biosynthesis of neuropeptides: peptide α-amidation.Annu Rev Neurosci, 1992, 15: 57–85.DOI: 10.1146/annurev.ne.15.030192.000421 |