删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

酿酒酵母戊糖转运蛋白及C6/C5共代谢菌株的研究进展

本站小编 Free考研考试/2021-12-26

汪城墙2,3, 李洪兴1,3, 徐丽丽1, 沈煜3, 侯进3, 鲍晓明1,3
1 齐鲁工业大学 生物工程学院 山东省微生物工程重点实验室,山东 济南 250353;
2 山东农业大学 生命科学学院 山东省农业微生物重点实验室,山东 泰安 271018;
3 山东大学 生命学院 微生物技术国家重点实验室,山东 济南 250100

收稿日期:2018-01-07;接收日期:2018-04-02 基金项目:国家自然科学基金(Nos. 31870063, 31470219, 31470166, 31700094),山东省自然科学基金(No. ZR2014CL003),山东省科技重大专项(新兴产业) (No. 2015ZDXX0403B02)资助

摘要:充分利用木质纤维素中的糖分是提高以此类生物质为原料生产二代燃料乙醇经济盈利性的基本要求,也是实现其他生物基化学品规模化生产的基础。传统的乙醇生产微生物酿酒酵母Saccharomyces cerevisiae具有独特的生产性能及内在优势,是备受关注的底盘细胞,但其不能有效地利用戊糖。利用代谢工程、合成生物学策略,对二代燃料乙醇生产专用酿酒酵母的精准构制持续研究了30余年,已明显改善了其对木糖/葡萄糖的乙醇共发酵能力。近年来关注点集中在早期忽略的限速步骤即糖转运环节的研究上,以期实现不同糖分各行其道、高效专一性转运蛋白各行其责的二代燃料乙醇生产特种酿酒酵母所需的糖转运理想状态。文中主要综述了酿酒酵母戊糖转运蛋白的研究进展,及酿酒酵母的木糖和L-阿拉伯糖代谢工程的研究现状。
关键词:糖转运蛋白 戊糖 代谢工程 纤维素乙醇 芽殖酵母
Progress in research of pentose transporters and C6/C5 co-metabolic strains in Saccharomyces cerevisiae
Chengqiang Wang2,3, Hongxing Li1,3, Lili Xu1, Yu Shen3, Jin Hou3, Xiaoming Bao1,3
1 Shandong Provincial Key Lab of Microbial Engineering, School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, China;
2 Shandong Key Laboratory of Agricultural Microbiology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China;
3 The State Key laboratory of Microbial Technology, College of Life Sciences, Shandong University, Jinan 250100, Shandong, China

Received: January 7, 2018; Accepted: April 2, 2018
Supported by: National Natural Science Foundation of China (Nos. 31870063, 31470219, 31470166, 31700094), Natural Science Foundation of Shandong Province, China (No. ZR2014CL003), Science and Technology Major Project in Shandong Province, China (Emerging Industries) (No. 2015ZDXX0403B02)
Corresponding author:Xiaoming Bao. Tel: +86-531-89631776; E-mail: bxm@sdu.edu.cn


Abstract: One of the requirements for increasing the economic profitability on the large-scale production of second-generation ethanol and other bio-chemicals using lignocellulose biomass as raw materials is efficient hexose and pentose utilization. Saccharomyces cerevisiae, the traditional ethanol producer, is an attractive chassis cell due to its robustness towards harsh environmental conditions and inherent advantages. But S. cerevisiae cannot utilize pentose. The precision construction of suitable strains for second-generation bio-ethanol production has been taken for more than three decades based on the principle of metabolic engineering and synthetic biology. The resulting strains have improved significantly co-fermentation of glucose and xylose. Recently, much attentions have been focused on sugar transport, which is one of the limiting but formerly ignored step for ethanol production from both glucose and xylose, to get the desired state that different sugars could efficiently delivered by their individual specific transporters. In this paper, the progress on sugar transporters of S. cerevisiae was reviewed, and the research status of xylose and/or L-arabinose metabolic engineering in S. cerevisiae were also presented.
Keywords: sugar transporter pentose metabolic engineering lignocellulosic bioethanol budding yeast
以地球上储量最丰富的可再生资源木质纤维素生物质为原料,生产环境友好的能源及化工化学品等生物基产品,能有效缓解石油等化石资源的消耗,降低对化石资源的依赖,对人类可持续发展有重要的积极意义。以秸秆类及相关工业弃物等生物质资源为原料生产二代燃料乙醇是生物质利用的有效途径之一。木质纤维素含有大量的六碳糖(主要是葡萄糖)及五碳糖(主要是木糖和L-阿拉伯糖),完全水解后得到的总糖含量与淀粉质原料接近,而充分利用这些糖分是实现经济盈利二代燃料乙醇生产的重要因素[1-4]。酿酒酵母Saccharomyces cerevisiae是传统的乙醇发酵微生物,具有利用己糖快速生长、发酵能力强、乙醇产率高、对乙醇等抑制物耐受性高及食品级安全性等优良生产性能。对多种糖分的高效共发酵是精准构制适于二代燃料乙醇生产酿酒酵母需要解决主要的瓶颈之一。利用代谢工程和合成生物学策略,包括本课题组在内的全球科学家对二代燃料乙醇专用酿酒酵母的精准构制已持续研究了30余年,主要通过理性改造(强化或弱化)有效分子元件及非理性定向进化等措施,目前已极大地提高了酿酒酵母木糖/葡萄糖的共发酵能力,基本达到产业化要求[5-17]。其中,糖转运环节是近年来较为关注的有效分子元件理性改造节点,目前糖转运蛋白已逐渐接近二代乙醇生产特种酿酒酵母所希望的糖转运理想状态,即不同糖分各行其道、高效专一性的转运蛋白各行其责,最大限度解除葡萄糖在转运环节对五碳糖转运的阻遏,提高糖醇转化率,并揭示了部分重要的转运调控分子机制[18]。同时相对滞后的葡萄糖、木糖和L-阿拉伯糖3种糖共发酵的酿酒酵母代谢工程研究也取得了阶段性结果[19]。本文综述了近年来木糖和L-阿拉伯糖转运,及三糖共发酵的研究进展,并分析酿酒酵母木糖代谢工程研究现状,为在工业领域的实际应用提供参考。
1 酿酒酵母戊糖转运的研究进展根据代谢工程理念,通过引入酿酒酵母缺乏的戊糖代谢上游途径,可以赋予酿酒酵母利用木糖或(和) L-阿拉伯糖的能力,但效率往往不高,虽然提高下游代谢流量正向关联戊糖的代谢效率[10, 19-20],但糖转运环节也必定是主要的限制因素[21]。一般地,酿酒酵母代谢工程菌通过内源性葡萄糖转运蛋白非特异性地执行对木糖或(和) L-阿拉伯糖的跨膜运输,这一过程受到葡萄糖的强烈抑制,局限了戊糖的转运效率,从而降低了糖的共利用效率[22-28]。因此,提高糖转运蛋白对戊糖的亲和力,甚至专一性转运戊糖而不受葡萄糖的抑制,是急需在二代燃料乙醇专用酿酒酵母中建立的特定性能。
1.1 戊糖转运蛋白的类型及结构基础微生物中的单糖转运蛋白可分成三大类:易化超家族转运蛋白(Major facilitator superfamily,MFS)、三磷酸腺苷结合盒转运蛋白(ATP-binding cassette,ABC)和磷酸烯醇式丙酮酸-糖磷酸转移酶转运蛋白(Carbohydrate phosphotransferase system,PTS)[22]。其中MFS型转运蛋白又分为两类,即:不消耗能量且借助糖浓度梯度的单向异化扩散型(Facilitator/Uniporter)被动运输;不依赖糖浓度梯度、但需偶联质子浓度消耗ATP能量的质子同向协同型(H+-linked symporter)主动运输[28-29]。研究表明酿酒酵母内源非特异性转运戊糖的转运蛋白均属于不消耗能量的单向异化扩散型[30-31]
由于膜蛋白的结构复杂性,其晶体结构不易得到。截至目前,尚未解析在酿酒酵母中表达的戊糖转运蛋白的具体晶体结构,但通过同源建模策略,可推测其结构[26, 32-33],为研究戊糖转运蛋白的转运机制和分子动力学提供结构基础。2012年,第一个戊糖转运蛋白的结构被解析,即大肠杆菌Escherichia coli中的质子同向协同型木糖转运蛋白XylEp。随后解析了胞外半开放[34]、胞内半开放和胞内开放[35-36]的构象。但在酿酒酵母中尚不能功能性表达[37]。2014年,人源葡萄糖单向转运蛋白GLUT1的晶体结构得以解析[38]。上述晶体结构为酿酒酵母源戊糖转运蛋白的结构分析提供了技术支持和参考模型。酿酒酵母中表达的戊糖转运蛋白(图 1),一般由12个跨膜区(即12个α螺旋)围绕构成一个孔道,分为2个各含6个α螺旋的结构域(N端结构域和C端结构域),N和C末端存在于细胞内[39],是典型的MFS转运蛋白结构特征。
图 1 酿酒酵母戊糖转运蛋白结构示意图 Figure 1 The structural diagram of pentose transporters in S. cerevisiae.
图选项




1.2 酿酒酵母戊糖转运蛋白的研究方法戊糖转运蛋白转运能力的分析需要借助于有效可行的研究方法,常用于酿酒酵母戊糖转运蛋白功能研究的方法有3种。其一,将转运蛋白表达在不含戊糖初始代谢途径的酿酒酵母菌株中,直接将菌株在H或C14同位素标记的戊糖中短时间孵育,测定胞内放射性的强弱直接得到戊糖转运蛋白的转运能力[40],但放射性对细胞自身的损伤导致孵育时间不宜过长,并对操作平台设施要求较高。其二,同样将不含戊糖初始代谢途径的酿酒酵母菌株,分别较长时间孵育在戊糖为唯一碳源的培养基中,收集细胞后,通过低渗等方式释放胞内积累的戊糖,测得的戊糖浓度即为木糖的积累量,并以此表征转运蛋白的戊糖转运能力[26, 29]。由于细胞内非特异性醛糖还原酶的作用,对应的还原产物戊糖醇也一并计算为胞内的戊糖积累量。其三,在酿酒酵母中引入戊糖初始代谢途径,并在含有戊糖的培养基中培养,测定菌株对戊糖的消耗及生长,间接推断其戊糖转运蛋白的转运能力[26, 37, 41]
但是上述方法都不便于戊糖转运蛋白性能的高通量定量筛选。本课题组建立了一个基于化学发光强度检测木糖运能力的新方法。其基本原理是在酿酒酵母细胞中表达有木糖苷酶(Xylosidase),在证明该木糖苷酶主要表达在细胞内的前提下,利用该酶可以水解木糖类似物对硝基酚木糖苷(p-nitrophenyl-β-D-xylopyranoside,pNPX)产生黄色的对硝基酚(p-nitrophenol,pNP),且该物质具有可以自由出入细胞的特点,通过检测细胞外化学发光的强度变化以表征木糖转运能力。该方法是高通量的间接筛选木糖转运蛋白的方法[24]。另外,通过构建木糖浓度感应的传感器系统,也是木糖转运蛋白的高通量筛选方法[42-43],其基本原理是在细胞内组成型表达异源阻遏蛋白XylR,其功能活性因与木糖结合与否而改变;同时将绿色荧光蛋白yEGFP置于受该阻遏蛋白调控的启动子下。胞内木糖量不足时,XylR抑制yEGFP的表达,但随着细胞内木糖摄入量的增加,结合木糖的XylR便促进绿色荧光蛋白的表达。因此,通过木糖转运蛋白转入细胞的木糖越多,绿色荧光强度越大,通过简单的荧光检测就可以高通量筛选木糖转运蛋白突变子。
1.3 酿酒酵母木糖转运蛋白的研究1.3.1 酿酒酵母中木糖转运蛋白功能表达研究野生型酿酒酵母可利用自身己糖转运蛋白非特异性地摄取木糖。早期德国法兰克福大学Boles教授利用构建的酿酒酵母的内源18个己糖转运蛋白全敲除菌株(hxt null,EBY.VW4000)[44],通过质粒导入,逐一分析了这些转运蛋白对木糖的转运能力,表明内源性转运木糖的蛋白主要是Hxt1p、Hxt2p、Hxt4p、Hxt5p、Hxt11p、Hxt7p和Gal2p。其中,Hxt7p和Gal2p对木糖的转运效率较高。但这些转运蛋白对木糖的亲和力远低于对葡萄糖的,并受到葡萄糖的强烈抑制,进而限制了重组酵母对木糖的利用[25, 30, 37, 44-48]
将天然能利用木糖微生物的高木糖亲和力转运蛋白异源表达在酿酒酵母中也是提高其木糖摄取效率的热门研究内容。到目前为止,源于瑞氏木霉Trichoderma reesei、间型假丝酵母Candida intermedia、新型隐球菌Cryptococcus neoformans、汉逊德巴利酵母Debaryomyces hansenii、树干毕赤酵母Scheffersomyces stipitis、解脂耶氏酵母Yarrowia lipolytica、粗糙脉孢菌Neurospora crassa、马克斯克鲁维酵母Kluyveromyces marxianus、季也蒙毕赤酵母Pichia guilliermondii和季也蒙酵母Meyerozyma guilliermondii等真核生物及拟南芥Arabidopsis thaliana的木糖转运蛋白已在酿酒酵母中异源表达[26, 29, 41, 49-50]。某些转运蛋白在一定条件下可以促进酿酒酵母对木糖的转运和利用能力,例如,C. intermedia的Gxf1p、S. stipitis的Sut1p和A. thaliana的At5g59250p、At5g17010p等在野生型酿酒酵母中表达后一定程度提高了菌株在木糖上的生长能力和代谢能力[48, 51-53]。而本课题组在对季也蒙酵母M. guilliermondii的研究中发现了两类糖转运蛋白:消耗能量的质子同向协同型的转运蛋白Mgt05860p,胞内木糖积累量较高,但却不能促进菌株在木糖上的生长能力;而不消耗能量的单向异化扩散型转运蛋白Mgt05196p,虽然胞内木糖积累量较低,但能较好地促进木糖利用[26]。尚未有细菌源木糖转运蛋白在酿酒酵母中有效表达的研究。
酿酒酵母的内源己糖转运蛋白全敲除菌株(hxt null,EBY.VW4000)[44]和主要己糖转运蛋白HXT1-7p与Gal2p的缺失菌株[54]是分析具体单个木糖转运蛋白转运能力的有效工具菌。通过上述1.2介绍的第3种酿酒酵母戊糖转运蛋白研究方法,即胞内戊糖积累量,或引入木糖初始代谢途径并通过生长表型来分析转运蛋白的木糖转运能力。例如:T. reesei的TrXlt1p和Stp1p,K. marxianus的KmAXT1p,P. guilliermondii的PgAXT1p,M. guilliermondii的Mgt05196p、Mgt05293p和Mgt04891p,C. intermedia的Gxf1p和Gxs1p,D. hansenii的XylHPp和2D01474p,S. stipitis的RGT2p、Xut1p和Xut3p等的导入,均能使含有木糖初始代谢途径但己糖转运蛋白全敲除(hxt null)的酿酒酵母菌株利用木糖生长[26, 30, 37, 49-50]N. crassaS. stipitis中分别克隆得到的转运蛋白An25p和Xyp29p[29],以及季也蒙酵母M. guilliermondii的Mgt05860p[26],虽然不能使菌株在木糖上生长,但可以表现出显著的木糖胞内积累量特征,也证明了木糖转运能力。
1.3.2 酿酒酵母木糖转运蛋白的功能位点分析与分子改造研究木糖转运蛋白的转运活性往往取决于某些保守序列和关键氨基酸位点,个别氨基酸的点突变就可以显著影响转运蛋白的转运效率和转运偏好性。目前已分析得到了木糖转运蛋白的部分重要功能位点,并且一些木糖转运能力提高的正突变子也证明有利于木糖的利用[25-26, 34, 42, 49, 55-57]
糖转运蛋白的保守序列“G-G/F-XXX-G”和“YFFYY”对木糖转运起到关键作用。Young等[23]首次分析了木糖转运活性位点,并对在酿酒酵母中异源表达的46个木糖转运蛋白的序列分析后发现了第一跨膜区(TMS1)上的保守序列“G-G/F-XXX-G”,通过对这一区域的氨基酸点突变,C. intermedia来源的突变子Gxs1V38F-L39I-F40M、S. stipitis来源的突变子Rgt2I38F-F40MS. cerevisiae来源的突变子Hxt7V39I-F40M-D340M均由葡萄糖木糖共转运转变为特异性转运木糖(表 1),但仍旧受到葡萄糖的抑制。本课题组通过对源于季也蒙酵母M. guilliermondii转运蛋白Mgt5196p的研究,发现了另一个存在于TMS7上的保守序列“YFFYY”,对每一个位点进行Ala失活突变后均显著降低转运蛋白对木糖的转运效率,可见此芳香族氨基酸富集区域对木糖转运的活性至关重要[26]
表 1 酿酒酵母中高活性表达的木糖特异性转运蛋白突变子Table 1 Highly-active and specific xylose tranporter mutants in S. cerevisiae
Transporter Original species Mutants Glucose inhibition References
Gxs1 Candida intermedia V38F, L39I, F40M Unsolved [49]
Rgt2 Scheffersomyces stipitis I38F, F40M Unsolved [49]
Hxt7 Saccharomyces cerevisiae V39I, F40M, D340M Unsolved [49]
Hxt11 S. cerevisiae The eleven mutants of N366 (N366A, N366C, N366D, N366F, N366G, N366I, N366L, N366M, N366S, N366T, N366V) Partially solved [25]
AN25 Neurospora crassa AN25-R4.18 (T63A, S280G, Y453C, A94T, E235G, F332S, I299T) Partially solved [33]
Gxs1 C. intermedia Gxs1-FIVFH497* (N326H, I171I, M40V, and so on) Partially solved [58]
Gal2 S. cerevisiae N376F Solved [32]
Hxt36 S. cerevisiae N367F Solved [55]
Mgt05196 Meyerozyma guilliermondii N360F Solved [26]
*just a part of the gene name in the original paper[58].

表选项


葡萄糖的存在会抑制木糖的利用,而在糖转运环节就存在这种抑制作用。筛选解除葡萄糖抑制的木糖特异性转运蛋白突变子,对提高酿酒酵母的混糖共代谢速率意义重大。通过分子改造,目前已获得了一些缓解或解除葡萄糖抑制的木糖特异性转运蛋白突变子。表 1显示、C. intermedia来源的突变子Gxs1-FIVFH497*[58]N. crassa来源的突变子AN25-R4.18[33]以及S. cerevisiae内源的突变子Hxt11-N366 mutants[25],均可以有效缓解葡萄糖对转运蛋白木糖转运活性的抑制,而酿酒酵母内源转运蛋白的点突变子Gal2N376F和Hxt36N367F,以及本课题组得到的源于季也蒙酵母M. guilliermondii转运蛋白突变子Mgt05196N360F,则是完全解除葡萄糖抑制的木糖专一性转运蛋白突变子[26, 32, 55]。这些突变子不仅是单糖特异性转运机制研究的重要素材,也是酿酒酵母工业菌株精准构制的重要有效元件。本课题组在酿酒酵母木糖利用工业菌株中表达了源于季也蒙酵母M. guilliermondii转运蛋白突变子Mgt05196N360F,并辅助定向驯化育种措施,使转运蛋白带来的木糖代谢能力提高了0.91倍[15],进一步提高了菌株的产业化性能。
1.4 酿酒酵母L-阿拉伯糖转运蛋白的研究野生型酿酒酵母可以通过内源的己糖运输蛋白Gal2p、Hxt9p和Hxt10p摄取L-阿拉伯糖[59],其中,对L-阿拉伯糖转运活性最高的是Gal2p。Wisselink等[60]通过敲除GAL2基因,使菌株丧失在L-阿拉伯糖上的生长能力,从另一角度证明了Gal2p的转运功能对酿酒酵母利用L-阿拉伯糖的积极意义。Becker等[61]和本课题组[19, 28]在酿酒酵母中超表达了内源的GAL2基因后增强了菌株对L-阿拉伯糖的吸收能力和代谢能力。
异源表达L-阿拉伯糖转运蛋白可以缓解葡萄糖的阻遏,有效提高酿酒酵母代谢L-阿拉伯糖的能力。迄今为止,人们已在多种天然L-阿拉伯糖代谢菌株当中发现了多个L-阿拉伯糖转运蛋白[31, 62],有效促进了L-阿拉伯糖转运功能的研究。最早,Verho等[63]从单孢虫道酵母Ambrosiozyma monospora中得到了2个可提高酿酒酵母L-阿拉伯糖转运能力的L-阿拉伯糖专一性转运蛋白。随后,天然可利用L-阿拉伯糖的真菌中来源的多个糖转运蛋白,在酿酒酵母己糖转运蛋白敲除菌株(hxt null,EBY.VW4000)[44]中均表现出L-阿拉伯糖转运能力,它们是S. stipitis的AraTp、A. thaliana的Stp2p、K. marxianus的KmAXT1p、P. guilliermondii的PgAXT1p、Mgt05860p、Mgt05293p和Mgt04891p、N. crassa的LAT-1、皮状丝孢酵母Trichosporon cutaneum的Tct1p、T. reesei的Stp1p和嗜热毁丝菌Myceliophthora thermophila的MtLAT-1[26, 50, 59, 62]
L-阿拉伯糖转运蛋白的功能位点研究相对较少。工具菌株的缺乏是限制因素之一。本课题组构建了可用于分析L-阿拉伯糖转运蛋白及其功能位点并方便使用的工具菌株。在前期构建的可以高效利用L-阿拉伯糖的菌株BSW3AP[28]的基础上,敲除基因组上的L-阿拉伯糖转运蛋白Gal2p,使菌株失去利用L-阿拉伯糖的能力,进而通过质粒引入糖转运蛋白,即可基于菌株在以L-阿拉伯糖为唯一碳源上的生长状态研究转运蛋白的功能。我们的研究结果表明,Gal2p的第一跨膜区上的保守区域“G-G/F-XXX-G”也是转运L-阿拉伯糖的重要区域,突变子Gal2p (F85S)可以显著提高L-阿拉伯糖和木糖转运效率,并可以缓解葡萄糖转运抑制[64]
2 酿酒酵母戊糖及混合糖代谢工程的研究2.1 酿酒酵母的木糖代谢工程的研究木质纤维素的全糖乙醇高效共转化是提高以木质纤维素生物质为原料二代燃料乙醇生产经济性的一个必要措施。虽然对传统乙醇生产菌酿酒酵母S. cerevisiae而言,需要解决葡萄糖、木糖和L-阿拉伯糖共利用的问题,但目前主要研究进展集中在葡萄糖/木糖的乙醇共发酵上。30多年来,酿酒酵母的木糖代谢工程研究历程可归纳成4个环节:①高效异源木糖利用途径的建立。酿酒酵母主要是缺乏转化木糖为木酮糖的上游代谢途径而不能代谢木糖。由木糖还原酶(Xylose reductase,XR)与木糖醇脱氢酶(Xylitol dehydrogenase,XDH)构成XR-XDH途径,是较早在酿酒酵母中建立的木糖代谢途径,但因为这对还原/氧化酶所依赖的辅酶因子偏好性不同,容易造成细胞内氧化还原不平衡,造成大量木糖醇等中间产物的积累,难以提高糖醇转化率。虽然开展了大量辅酶工程的研究,但这一缺陷始终没能有效克服[9-10, 65-67]。而无需辅酶且一步完成木糖到木酮糖转化的短程木糖异构酶XI (Xylose isomerase)途径,普遍认为是搭建酿酒酵母木糖代谢途径的首选策略,但能在酿酒酵母中高活性表达的木糖异构酶基因的筛选却经历了十分艰苦的过程,直到2003年才报道了第一例[6],随后,包括本课题组在内又陆续报道了几例[68-71]。虽然上述建立了初始木糖代谢途径的重组菌株可以利用木糖,但效率不高。②内源性代谢节点的理性改造。木糖转化为木酮糖,再经过磷酸戊糖途径(Pentose phosphate pathway,PPP)进入乙醇发酵主代谢途径。本环节主要包括理性强化内源下游途径,弱化旁支途径及能源消耗节点等[10, 17, 69-70, 72]。近年来,理性改造的关注点偏移到糖转运环节,酿酒酵母中葡萄糖对木糖的转运有明显的阻遏作用,适于二代燃料乙醇生产酿酒酵母糖转运的理想状态是木糖/葡萄糖各行其道、高效专一性转运蛋白各行其责,本文已对相关研究进展进行了总结。③进化工程的非理性改造。由于木糖代谢及木质纤维素预处理过程产生的抑制物的复杂性,及人们对相关生物学过程理论认识依然不足,因而,菌株在木糖或胁迫条件下进行长期适应性进化并筛选,是进一步提高木糖代谢能力及抑制物耐受力普遍使用的有效措施,且不乏有成功的例子[10-11, 13, 15, 73]。④木糖/葡萄糖共代谢鲁棒性酿酒酵母工业菌株的构建。酿酒酵母单倍体营养缺陷型菌株易于得到研究结果,但不适于粗放条件的产业化生产过程,因此,需要将上述研究结果引入到鲁棒性较强的酿酒酵母工业菌株底盘细胞中,目前所得到的重组菌发酵木质纤维素水解液,糖醇转化率在0.40?0.48 g/g (Total sugar)之间[13-15, 74]。其中本课题组通过综合评估选择出鲁棒性强且本底木糖代谢能力较高的二倍体野生型酿酒酵母菌株为底盘细胞,并基于两个独特的重要元件——能在酿酒酵母中高效表达的木糖异构酶Ru-XI (编码基因Ru-xylA源于牛瘤胃宏基因组,ZL 201110042170.2,US 8, 586, 336 B2,EP 2679686)及不受葡萄糖阻遏的木糖专一性转运蛋白Mgt05196pN360F,对底盘细胞进行一系列理性及非理性改造,最终得到一株高效同步共发酵木糖/葡萄糖酿酒酵母工程菌株LF1。其对混合糖发酵时,约16 h即可耗尽培养基中全部葡萄糖和94.5%木糖,乙醇得率达到理论得率的93%以上。更可喜的是该菌株表现出很好的木糖/葡萄糖同步共发酵的能力,在葡萄糖耗尽(约12 h)时,木糖的消耗为77.6%。在两种木质纤维素预处理水解液(稀酸预处理的玉米秸秆水解液SECS和亚硫酸盐预处理的小麦秸秆造纸残渣SPPR)中也具有优良的发酵能力。为降低生产成本,以尿素为氮源寡营养的条件下,在SPPR中,18 h内菌株即可耗尽全部木糖,在SECS中,约40 h消耗90%以上的木糖,乙醇得率均达到理论乙醇得率的80%以上[15, 75]
2.2 酿酒酵母L-阿拉伯糖代谢工程的研究相对于木糖代谢工程,酿酒酵母L-阿拉伯糖途径精准构制的研究相对滞后。同样地,天然酿酒酵母没有L-阿拉伯糖的初始代谢途径,需要将其他微生物中存在的L-阿拉伯糖初始代谢途径引入酿酒酵母中,以在酿酒酵母中建立L-阿拉伯糖代谢途径。
L-阿拉伯糖通过5-磷酸木酮糖中间产物进入主代谢,微生物中完成这一过程的主要途径有两条[76]。真菌中是需要5个酶的复杂途径[77],即L-阿拉伯糖还原酶(Arabinose reductase,AR)、L-阿拉伯糖醇-4-脱氢酶(L-arabinitol 4-dehydrogenase,LAD)、L-木酮糖还原酶(L-xylulose reductase,LXR)、木糖醇脱氢酶(D-xylitol dehydrogenase,XDH)和木酮糖激酶(Xylulokinase,XK),其中包括4个氧化还原反应,容易造成氧化还原不平衡[77-78]。而细菌中L-阿拉伯糖初始代谢途径是通过3个酶完成,即L-阿拉伯糖异构酶(L-arabinose isomerase,AI)、L-核酮糖激酶(L-ribulokinase,RK)和L-核酮糖-5-磷酸-4-差向异构酶(L-ribulose-5-P-4-epimerase,RPE)。其中AI的活性是在酿酒酵母中建立L-阿拉伯糖代谢途径的关键节点[61]。为此,本课题组[28]进一步通过提高L-阿拉伯糖异构酶AI基因的拷贝数、强化磷酸戊糖途径、超表达内源性对L-阿拉伯糖亲和力较高的转运蛋白Gal2p,并结合L-阿拉伯糖为唯一碳源的适应性进化等策略,显著提高了酿酒酵母菌株L-阿拉伯糖的代谢能力,L-阿拉伯糖最大比消耗速率达到0.61 g/(h?g DCW) (Dry cell weight)。
2.3 酿酒酵母三糖共代谢菌株的构建充分利用木质纤维素原料,需要在酿酒酵母中构建葡萄糖、木糖和L-阿拉伯糖共发酵菌株,以拓展酿酒酵母底物利用范围,实现木质纤维素原料的全糖转化。但目前关于三糖共发酵酿酒酵母工程菌株构建的报道并不多,而多半是在实验室菌株中完成,且糖醇转化效率较低。
由于真菌的L-阿拉伯糖初始代谢途径中包括了木糖的XR-XDH初始代谢途径,Bettiga等[77]在酿酒酵母中引入该途径,使其可以利用三糖,但对木糖和L-阿拉伯糖的利用率很低。葡萄糖耗尽后,菌株对木糖和L-阿拉伯糖的比消耗速率分别为0.08 g/(h·g DCW)和0.02 g/(h·g DCW),乙醇得率达到0.35 g/(g Pentose),仅为理论值的68%。相反,Bera等[79]是在含有木糖XR-XDH代谢途径的酿酒酵母菌株中,又表达了L-阿拉伯糖醇-4-脱氢酶(LAD)和L-木酮糖还原酶(ALK),也得到了共利用三糖的菌株。Karhumaa等[80]和Sanchez等[81]将细菌L-阿拉伯糖初始代谢途径和木糖XR-XDH初始代谢途径同时引入酿酒酵母,菌株也可以利用三糖,但木糖还原酶(XR)减少了L-阿拉伯糖向乙醇代谢的流向,而增加副产物L-阿拉伯糖醇的产生。为了缓解细菌L-阿拉伯糖初始代谢途径受XR的影响,Wisselink等[82]将细菌L-阿拉伯糖初始代谢途径和木糖异构酶(Xylose isomerase,XI)共表达,舍弃容易产生副产物的氧化还原途径(XR-XDH途径),得到共利用葡萄糖、木糖和L-阿拉伯糖的重组菌株[76, 82],共糖发酵乙醇产率达到0.43g/g (Total sugar),达到理论值的84%,且没有副产物木糖醇和阿拉伯糖醇的积累。进一步采用适应性进化策略选育,使重组菌株对30 g/L葡萄糖、15 g/L木糖和15 g/L L-阿拉伯糖的共发酵时间从60 h降为35 h,但乙醇得率没有变化。本课题组将细菌的阿拉伯糖初始代谢途径和木糖的XR-XDH与XI代谢途径共表达,获得了三糖代谢菌株BSW4XA3,木糖和L-阿拉伯糖的消耗速率相近,实现戊糖同步利用,而且葡萄糖的代谢效率不受影响[19],大大推进了酿酒酵母三糖共代谢工程的研究进程。
3 讨论与展望构建高效发酵木质纤维素全糖组分的酿酒酵母二倍体工程菌株,是纤维素乙醇规模化生产与应用的前提条件之一。酿酒酵母的葡萄糖利用能力很强,且工程菌也能利用木糖和L-阿拉伯糖,但戊糖代谢能力依然有待进一步提高。转运环节是木糖和L-阿拉伯糖进入酿酒酵母细胞进行代谢的第一步,也是限制两种戊糖代谢水平的瓶颈问题之一,这一过程尤其受到葡萄糖的强烈抑制。构建高效利用戊糖的重组酿酒酵母菌株,需要筛选得到对两种戊糖转运能力和亲和力更高的转运蛋白。迄今为止,在酿酒酵母中已报道了一些内源和异源功能性表达的戊糖转运蛋白,并对戊糖转运的分子转运机制进行了初步的分析,取得了一定进展;但由于戊糖转运蛋白的多样性和复杂性,以及研究技术等问题的限制,整体研究工作尚需要进一步深入。目前,虽已获得了几个解除葡萄糖抑制的木糖专一性转运蛋白,但在野生型酿酒酵母中,葡萄糖的利用效率仍旧高于木糖,两者的协同共利用效率尚需进一步提高。质子同向型转运蛋白对戊糖的转运偏好性较高,是提高戊糖转运效率的又一有效手段,但表达活性普遍较弱,尤其是细菌源的戊糖高偏好性转运蛋白尚未在酿酒酵母中活性表达。现在虽有细菌源木糖转运蛋白结构的解析,但酿酒酵母中表达的戊糖转运蛋白的真实晶体结构尚不清楚,如何成功解析酵母菌戊糖转运蛋白的晶体结构是摆在我们面前的一大难题。通过一些有效的研究策略,获得更高活性的木糖和L-阿拉伯糖专一性转运蛋白突变子,实现葡萄糖和两种戊糖协同代谢,是提高酿酒酵母纤维素乙醇生成效率、推动规模化生产进程的重要前提。
酿酒酵母二代燃料乙醇的规模化发酵,需要完成葡萄糖和木糖的高效糖醇转化。除了转运环节,目前也已进行了大量胞内木糖代谢途径和表达调控研究,大大提高了高效共转化木糖/葡萄糖能力。后续需要进一步通过代谢工程和合成生物学策略提高葡萄糖存在下的木糖代谢效率,以及提高菌株对上游工艺过程产生抑制物的耐受性,提升应用价值。随着研究的不断深入,木糖和L-阿拉伯糖转运蛋白和代谢工程研究将在推动适于木质纤维素乙醇生产酿酒酵母工业菌株的选育和应用领域发挥重要作用。

参考文献
[1]Hahn-H gerdal B, Galbe M, Gorwa-Grauslund MF, et al. Bio-ethanol-the fuel of tomorrow from the residues of today.Trends Biotechnol, 2006, 24(12): 549–556.DOI: 10.1016/j.tibtech.2006.10.004
[2]Seiboth B, Metz B. Fungal arabinan and L-arabinose metabolism.Appl Microbiol Biotechnol, 2011, 89(6): 1665–1673.DOI: 10.1007/s00253-010-3071-8
[3]Kim SR, Ha SJ, Wei N, et al. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol.Trends Biotechnol, 2012, 30(5): 274–282.DOI: 10.1016/j.tibtech.2012.01.005
[4]Joelsson E, Erdei B, Galbe M, et al. Techno-economic evaluation of integrated first- and second-generation ethanol production from grain and straw.Biotechnol Biofuels, 2016, 9(1): 1.DOI: 10.1186/s13068-015-0423-8
[5]Walfridsson M, Bao XM, Anderlund M, et al. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase.Appl Environ Microbiol, 1996, 62(12): 4648–4651.
[6]Kuyper M, Harhangi HR, Stave AK, et al. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?.FEMS Yeast Res, 2003, 4(1): 69–78.DOI: 10.1016/S1567-1356(03)00141-7
[7]Kuyper M, Winkler AA, Van Dijken JP, et al. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.FEMS Yeast Res, 2004, 4(6): 655–664.DOI: 10.1016/j.femsyr.2004.01.003
[8]Wang Y, Shi WL, Liu XY, et al. Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae.Biotechnol Lett, 2004, 26(11): 885–890.DOI: 10.1023/B:bile.0000025897.21106.92
[9]Zhang XR, Shen Y, Shi WL, et al. Ethanolic cofermentation with glucose and xylose by the recombinant industrial strain Saccharomyces cerevisiae NAN-127 and the effect of furfural on xylitol production.Bioresour Technol, 2010, 101(18): 7093–7099.DOI: 10.1016/j.biortech.2010.03.129
[10]Peng BY, Shen Y, Li XW, et al. Improvement of xylose fermentation in respiratory-deficient xylose-fermenting Saccharomyces cerevisiae.Metab Eng, 2012, 14(1): 9–18.DOI: 10.1016/j.ymben.2011.12.001
[11]Shen Y, Chen X, Peng BY, et al. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile.Appl Microbiol Biotechnol, 2012, 96(4): 1079–1091.DOI: 10.1007/s00253-012-4418-0
[12]Den Haan R, Kroukamp H, Mert M, et al. Engineering Saccharomyces cerevisiae for next generation ethanol production.J Chem Technol Biotechnol, 2013, 88(6): 983–991.DOI: 10.1002/jctb.2013.88.issue-6
[13]Diao LY, Liu YM, Qian FH, et al. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution.BMC Biotechnol, 2013, 13: 110.DOI: 10.1186/1472-6750-13-110
[14]Demeke MM, Dietz H, Li YY, et al. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering.Biotechnol Biofuels, 2013, 6(1): 89.DOI: 10.1186/1754-6834-6-89
[15]Li HX, Shen Y, Wu ML, et al. Engineering a wild-type diploid Saccharomyces cerevisiae strain for second-generation bioethanol production.Bioresour Bioprs, 2016, 3(1): 51.DOI: 10.1186/s40643-016-0126-4
[16]Hou J, Qiu CX, Shen Y, et al. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose.FEMS Yeast Res, 2017, 17(4).DOI: 10.1093/femsyr/fox034
[17]Kim SR, Skerker JM, Kong Ⅱ, et al. Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol.Metab Eng, 2017, 40: 176–185.DOI: 10.1016/j.ymben.2017.02.006
[18]Nijland JG, Vos E, Shin HY, et al. Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae.Biotechnol Biofuels, 2016, 9: 158.DOI: 10.1186/s13068-016-0573-3
[19]Wang CQ, Zhao JZ, Qiu CX, et al. Coutilization of D-glucose, D-xylose, and L-arabinose in Saccharomyces cerevisiae by coexpressing the metabolic pathways and evolutionary engineering.Biomed Res Int, 2017, 2017: 5318232.
[20]Jo JH, Park YC, Jin YS, et al. Construction of efficient xylose-fermenting Saccharomyces cerevisiae through a synthetic isozyme system of xylose reductase from Scheffersomyces stipitis.Bioresour Technol, 2017, 241: 88–94.DOI: 10.1016/j.biortech.2017.05.091
[21]Subtil T, Boles E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae.Biotechnol Biofuels, 2012, 5: 14.DOI: 10.1186/1754-6834-5-14
[22]Jojima T, Omumasaba C, Inui M, et al. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook.Appl Microbiol Biotechnol, 2010, 85(3): 471–480.DOI: 10.1007/s00253-009-2292-1
[23]Young EM, Comer AD, Huang HS, et al. A molecular transporter engineering approach to improving xylose catabolism in Saccharomyces cerevisiae.Metab Eng, 2012, 14(4): 401–411.DOI: 10.1016/j.ymben.2012.03.004
[24]Wang CQ, Shen Y, Hou J, et al. An assay for functional xylose transporters in Saccharomyces cerevisiae.Anal Biochem, 2013, 442(2): 241–248.DOI: 10.1016/j.ab.2013.07.041
[25]Shin HY, Nijland JG, De Waal PP, et al. An engineered cryptic Hxt11 sugar transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae.Biotechnol Biofuels, 2015, 8: 176.DOI: 10.1186/s13068-015-0360-6
[26]Wang CQ, Bao XM, Li YW, et al. Cloning and characterization of heterologous transporters in Saccharomyces cerevisiae and identification of important amino acids for xylose utilization.Metab Eng, 2015, 30: 79–88.DOI: 10.1016/j.ymben.2015.04.007
[27]Wang XN, Liang ZZ, Hou J, et al. Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin re-sistance.BMC Biotechnol, 2016, 16: 31.DOI: 10.1186/s12896-016-0264-y
[28]Wang CQ, Shen Y, Zhang Y, et al. Improvement of L-Arabinose fermentation by modifying the metabolic pathway and transport in Saccharomyces cerevisiae.Biomed Res Int, 2013, 2013: 461204.
[29]Du J, Li SJ, Zhao HM. Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis.Mol Biosyst, 2010, 6(11): 2150–2156.DOI: 10.1039/c0mb00007h
[30]Saloheimo A, Rauta J, Stasyk O, et al. Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases.Appl Microbiol Biotechnol, 2007, 74(5): 1041–1052.DOI: 10.1007/s00253-006-0747-1
[31]Leandro MJ, Fonseca C, Gon?alves P. Hexose and pentose transport in ascomycetous yeasts: an overview.FEMS Yeast Res, 2009, 9(4): 511–525.DOI: 10.1111/fyr.2009.9.issue-4
[32]Farwick A, Bruder S, Schadeweg V, et al. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose.Proc Natl Acad Sci USA, 2014, 111(14): 5159–5164.DOI: 10.1073/pnas.1323464111
[33]Wang M, Yu CZ, Zhao HM. Directed evolution of xylose specific transporters to facilitate glucose-xylose co-utilization.Biotechnol Bioeng, 2016, 113(3): 484–491.DOI: 10.1002/bit.v113.3
[34]Sun LF, Zeng X, Yan CY, et al. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4.Nature, 2012, 490(7420): 361–366.DOI: 10.1038/nature11524
[35]Quistgaard EM, L?w C, Moberg P, et al. Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters.Nat Struct Mol Biol, 2013, 20(6): 766–768.DOI: 10.1038/nsmb.2569
[36]Wisedchaisri G, Park MS, Iadanza MG, et al. Proton-coupled sugar transport in the prototypical major facilitator superfamily protein XylE.Nat Commun, 2014, 5: 4521.DOI: 10.1038/ncomms5521
[37]Young E, Poucher A, Comer A, et al. Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a Host.Appl Environ Microbiol, 2011, 77(10): 3311–3319.DOI: 10.1128/AEM.02651-10
[38]Deng D, Xu C, Sun PC, et al. Crystal structure of the human glucose transporter GLUT1.Nature, 2014, 510(7503): 121–125.DOI: 10.1038/nature13306
[39]Deng D, Yan N. Structural basis and transport mechanism of the major facility superfamily (MFS) transporter.Chin Sci Bull, 2015, 60(8): 720–728.(in Chinese).
邓东, 颜宁. MFS超家族转运蛋白结构基础及转运机制.科学通报, 2015, 60(8): 720-728.
[40]Lee WJ, Kim MD, Ryu YW, et al. Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae.Appl Microbiol Biotechnol, 2002, 60(1/2): 186–191.
[41]Runquist D, Hahn-H gerdal B, Radstrom P. Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae.Biotechnol Biofuels, 2010, 3: 5.DOI: 10.1186/1754-6834-3-5
[42]Wang M, Li SJ, Zhao HM. Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae.Biotechnol Bioeng, 2016, 113(1): 206–215.DOI: 10.1002/bit.v113.1
[43]Teo WS, Chang MW. Bacterial XylRs and synthetic promoters function as genetically encoded xylose biosensors in Saccharomyces cerevisiae.Biotechnol J, 2015, 10(2): 315–322.DOI: 10.1002/biot.v10.2
[44]Wieczorke R, Krampe S, Weierstall T, et al. Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae.FEBS Lett, 1999, 464(3): 123–128.DOI: 10.1016/S0014-5793(99)01698-1
[45]Hamacher T, Becker J, Gárdonyi M, et al. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization.Microbiol, 2002, 148(9): 2783–2788.DOI: 10.1099/00221287-148-9-2783
[46]Sedlak M, Ho NWY. Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast.Yeast, 2004, 21(8): 671–684.DOI: 10.1002/(ISSN)1097-0061
[47]Jeffries TW. Engineering yeasts for xylose metabolism.Curr Opin Biotechnol, 2006, 17(3): 320–326.DOI: 10.1016/j.copbio.2006.05.008
[48]Hector R, Qureshi N, Hughes S, et al. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption.Appl Microbiol Biotechnol, 2008, 80(4): 675–684.DOI: 10.1007/s00253-008-1583-2
[49]Young EM, Tong A, Bui H, et al. Rewiring yeast sugar transporter preference through modifying a conserved protein motif.Proc Natl Acad Sci USA, 2014, 111(1): 131–136.DOI: 10.1073/pnas.1311970111
[50]Knoshaug EP, Vidgren V, Magalh?es F, et al. Novel transporters from Kluyveromyces marxianus and Pichia guilliermondii expressed in Saccharomyces cerevisiae enable growth on l-arabinose and d-xylose.Yeast, 2015, 32(10): 615–628.DOI: 10.1002/yea.3084
[51]Leandro MJ, Gon?alves P, Spencer-Martins I. Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter.Biochem J, 2006, 395(3): 543–549.DOI: 10.1042/BJ20051465
[52]Katahira S, Ito M, Takema H, et al. Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1.Enzyme Microb Technol, 2008, 43(2): 115–119.DOI: 10.1016/j.enzmictec.2008.03.001
[53]Runquist D, Fonseca C, R dstr m P, et al. Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae.Appl Microbiol Biotechnol, 2009, 82(1): 123–130.DOI: 10.1007/s00253-008-1773-y
[54]Kruckeberg AL, Ye L, Berden JA, et al. Functional expression, quantification and cellular localization of the Hxt2 hexose transporter of Saccharomyces cerevisiae tagged with the green fluorescent protein.Biochem J, 1999, 339(2): 299–307.DOI: 10.1042/bj3390299
[55]Nijland JG, Shin HY, De Jong RM, et al. Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae.Biotechnol Biofuels, 2014, 7(1): 168.DOI: 10.1186/s13068-014-0168-9
[56]Apel AR, Ouellet M, Szmidt-Middleton H, et al. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae.Sci Rep, 2016, 6: 19512.DOI: 10.1038/srep19512
[57]Reznicek O, Facey SJ, De Waal P, et al. Improved xylose uptake in Saccharomyces cerevisiae due to directed evolution of galactose permease Gal2 for sugar co-consumption.J Appl Microbiol, 2015, 119(1): 99–111.DOI: 10.1111/jam.2015.119.issue-1
[58]Li HB, Schmitz O, Alper HS. Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter.Appl Microbiol Biotechnol, 2016, 100(23): 10215–10223.DOI: 10.1007/s00253-016-7879-8
[59]Subtil T, Boles E. Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters.Biotechnol Biofuels, 2011, 4: 38.DOI: 10.1186/1754-6834-4-38
[60]Wisselink HW, Cipollina C, Oud B, et al. Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae.Metab Eng, 2010, 12(6): 537–551.DOI: 10.1016/j.ymben.2010.08.003
[61]Becker J, Boles E. A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol.Appl Environ Microbiol, 2003, 69(7): 4144–4150.DOI: 10.1128/AEM.69.7.4144-4150.2003
[62]Li JG, Xu J, Cai PL, et al. Functional analysis of Two L-arabinose transporters from filamentous fungi reveals promising characteristics for improved pentose utilization in Saccharomyces cerevisiae.Appl Environ Microbiol, 2015, 81(12): 4062–4070.DOI: 10.1128/AEM.00165-15
[63]Verho R, Penttil M, Richard P. Cloning of two genes (LAT1, 2) encoding specific L-arabinose transporters of the L-arabinose fermenting yeast Ambrosiozyma monospora.Appl Biochem Biotechnol, 2011, 164(5): 604–611.DOI: 10.1007/s12010-011-9161-y
[64]Wang CQ, Li YW, Qiu CX, et al. Identification of important amino acids in Gal2p for improving the L-arabinose transport and metabolism in Saccharomyces cerevisiae.Front Microbiol, 2017, 8: 1391.DOI: 10.3389/fmicb.2017.01391
[65]Ho NWY, Chen ZD, Brainard AP. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose.Appl Environ Microbiol, 1998, 64(5): 1852–1859.
[66]Eliasson A, Christensson C, Wahlbom CF, et al. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures.Appl Environ Microbiol, 2000, 66(8): 3381–3386.DOI: 10.1128/AEM.66.8.3381-3386.2000
[67]Zeng WY, Tang YQ, Gou M, et al. Comparative transcriptomes reveal novel evolutionary strategies adopted by Saccharomyces cerevisiae with improved xylose utilization capability.Appl Microbiol Biotechnol, 2017, 101(4): 1753–1767.DOI: 10.1007/s00253-016-8046-y
[68]Madhavan A, Tamalampudi S, Ushida K, et al. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol.Appl Microbiol Biotechnol, 2009, 82(6): 1067–1078.DOI: 10.1007/s00253-008-1794-6
[69]Aeling KA, Salmon KA, Laplaza JM, et al. Co-fermentation of xylose and cellobiose by an engineered Saccharomyces cerevisiae.J Ind Microbiol Biotechnol, 2012, 39(11): 1597–1604.DOI: 10.1007/s10295-012-1169-y
[70]Hector RE, Dien BS, Cotta MA, et al. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24.Biotechnol Biofuels, 2013, 6(1): 84.DOI: 10.1186/1754-6834-6-84
[71]Hou J, Shen Y, Jiao CL, et al. Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome in Saccharomyces cerevisiae.J Biosci Bioeng, 2016, 121(2): 160–165.DOI: 10.1016/j.jbiosc.2015.05.014
[72]Peng BY, Chen X, Shen Y, et al. Effect of controlled overexpression of xylulokinase by different promoters on xylose metabolism in Saccharomyces cerevisiae.Acta Microbiol Sin, 2011, 51(7): 914–922.(in Chinese).
彭炳银, 陈晓, 沈煜, 等. 不同启动子控制下木酮糖激酶的差异表达及其对酿酒酵母木糖代谢的影响.微生物学报, 2011, 51(7): 914-922.
[73]Lee SM, Jellison T, Alper HS. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields.Biotechnol Biofuels, 2014, 7(1): 122.
[74]Kim SR, Skerker JM, Kang W, et al. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae.PLoS ONE, 2013, 8(2): e57048.DOI: 10.1371/journal.pone.0057048
[75]Li HX, Wu ML, Xu LL, et al. Evaluation of industrial Saccharomyces cerevisiae strains as the chassis cell for second-generation bioethanol production.Microb Biotechnol, 2015, 8(2): 266–274.DOI: 10.1111/mbt2.2015.8.issue-2
[76]Wisselink HW, Toirkens MJ, Del Rosario Franco Berriel M, et al. Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.Appl Environ Microbiol, 2007, 73(15): 4881–4891.DOI: 10.1128/AEM.00177-07
[77]Bettiga M, Bengtsson O, Hahn-H gerdal B, et al. Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway.Microb Cell Fact, 2009, 8: 40.DOI: 10.1186/1475-2859-8-40
[78]Fonseca C, Rom?o R, Rodrigues de Sousa H, et al. L-arabinose transport and catabolism in yeast.FEBS J, 2007, 274(14): 3589–3600.DOI: 10.1111/j.1742-4658.2007.05892.x
[79]Bera AK, Sedlak M, Khan A, et al. Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A (LNH-ST) by genetic engineering.Appl Microbiol Biotechnol, 2010, 87(5): 1803–1811.DOI: 10.1007/s00253-010-2609-0
[80]Karhumaa K, Wiedemann B, Hahn-H gerdal B, et al. Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains.Microb Cell Fact, 2006, 5: 18.DOI: 10.1186/1475-2859-5-18
[81]Garcia Sanchez R, Karhumaa K, Fonseca C, et al. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering.Biotechnol Biofuels, 2010, 3: 13.DOI: 10.1186/1754-6834-3-13
[82]Wisselink HW, Toirkens MJ, Wu QX, et al. Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains.Appl Environ Microbiol, 2009, 75(4): 907–914.DOI: 10.1128/AEM.02268-08

相关话题/阿拉伯 工程 结构 生产 细胞