Loading [MathJax]/jax/output/HTML-CSS/jax.js
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于FPAA模拟神经网络的快速预测控制算法

本站小编 Free考研考试/2020-04-15

徐祖华, 黄彦春, 陈铭豪, 赵均, 邵之江
浙江大学 控制科学与工程学院, 流程生产质量优化与控制国际联合研究中心, 杭州 310027

收稿日期:2018-09-27
基金项目:国家重点研发计划资助项目(2017YFA0700300);NSFC-浙江两化融合联合基金资助项目(U1509209);国家自然科学基金资助项目(61773340);中央高校基本科研业务费专项(2018QNA5011)
作者简介:徐祖华(1976-), 男, 副教授
通信作者:赵均, 副教授, E-mail:jzhao@zju.edu.cn

摘要:针对模型预测控制(model predictive control,MPC)优化求解中占用资源较多、实时性较低且实现相对复杂的问题,该文提出了一种基于现场可编程模拟阵列(field programmable analog array,FPAA)模拟神经网络的快速模型预测控制算法。通过FPAA模拟电路来实现基于连续神经网络的二次规划求解,有效规避了离散神经网络的收敛性问题,具有求解速度快、占用资源小、简单易实现的特点;通过平移变换和尺度变换方法,解决FPAA模拟电路的信号限制。最后该文给出了FPAA模拟神经网络预测控制软硬件设计方案并通过实验验证了该算法的有效性。
关键词:快速预测控制现场可编程模拟阵列(FPAA)模拟神经网络
Fast predictive control algorithm based on an FPAA analog neural network
XU Zuhua, HUANG Yanchun, CHEN Minghao, ZHAO Jun, SHAO Zhijiang
National Center for International Research on Quality-Targeted Process Optimization and Control, College of Control Science and Engineering, Zhejiang University, Hangzhou 310027, China


Abstract: A fast predictive control algorithm was developed for simpler, faster MPC optimization based on an FPAA analog neural network. An FPAA analog circuit provides the quadratic programming using a continuous neural network which avoids the convergence problem of discrete neural networks in a fast, simple and flexible algorithm that uses less computational resources than previous methods. The signal constraint of the FPAA analog circuit is solved by translation and scaling. The software and hardware design of the FPAA analog neural network predictive control is presented and verified in tests that show that the algorithm is effective.
Key words: fast model predictive controlfield programmable analog array (FPAA)analog neural network
模型预测控制(model predictive control, MPC)具有处理约束和多变量耦合的优势,在工业过程中得到了广泛应用。MPC需要在线求解带约束的二次规划(quadratic programing,QP)问题,因此占用较多的计算资源和较长的计算时间,早期MPC大多采用上位机作为控制平台应用在慢采样的流程中。为了拓展MPC的应用领域,很多****致力于快速模型预测控制算法的研究。常见的几类快速模型预测控制算法研究有显式预测控制(explicit MPC, EMPC)、基于传统数值解法的MPC、基于神经网络的MPC、离散和在线相结合的MPC等。
神经网络求解二次规划与传统数值解法求解二次规划一样,都属于在线求解方法。神经网络的优势在于具有天然并行性、自适应性和电路可实现性。早期,****们[1-5]为了得到求解优化问题的神经网络模型,主要做法为引入惩罚项,将有约束优化问题等价转化为无约束优化问题,基于梯度法推导神经网络模型。因为采用了罚函数法,该类型的网络需要考虑惩罚因子的参数选择问题。这不仅使得网络实施起来更加困难,而且还只能收敛到最优解的近似值。为了得到最优解的精确值,****们[6-9]不再采用罚函数法,而是通过投影定理将不等式约束转化为等式约束,基于对偶原理和KKT(Karush-Kuhn-Tucker)条件直接构造神经网络模型。该类型神经网络可以准确求解QP问题,但是不同的网络具有不同的复杂度。目前,已经有基于神经网络的预测控制算法理论研究,但是尚不如基于传统数值解法的预测控制算法应用广泛,主要原因在于神经网络的优势需要基于模拟电路实现方式才能充分体现,而模拟电路实现神经网络困难较大。因此,目前大多将网络进行离散化,然后通过数字电路来实现。但正因为如此,神经网络相对于传统数值解法,并没有展现出明显的优势。
一般来说,模拟电路的实时性总是高于数字电路。关于模拟电路在优化领域的理论研究很早就开始了,Dennis等[10]设计了模拟电路用来求解QP问题。Chua等[11]利用模拟电路实现了Hopfield神经网络,并用于求解非线性优化问题。Vichik等[12]针对线性规划和QP的求解,设计了模拟电路。Tank和Hopfield[13]展示了模拟电路是如何用来求解优化问题的。Vichik等[14]设计了用于求解QP的模拟电路并给出了模拟电路的稳定性证明。
随着可编程模拟器件(PDA)的发展,出现了现场可编程模拟阵列(field programmable analog array,FPAA)。由于FPAA既具有模拟电路经济、简洁、低功耗以及高速的优点,又具有可编程配置能力,因此在各领域中应用逐渐增多。本文采用FPAA进行了简化对偶神经网络(simplified dual neural network, SDNN)的模拟电路设计和实现,具有较大的通用性,并进一步提出了基于FPAA模拟神经网络的快速模型预测控制算法。
1 基于状态空间的MPC算法考虑如下的线性时不变离散状态空间模型:
xm(k+1)=Amxm(k)+Bmu(k),y(k)=Cmxm(k). (1)
其中: yRny是被控变量,uRnu是控制变量,xmRnx是状态变量。
定义新的状态变量x(k)=[Δxm(k)Ty(k)T]T可以将式(1)转化为如下的状态空间增量模型为
x(k+1)=Ax(k)+BΔu(k),y(k)=Cx(k). (2)
令:
YP(k)=[y(k+1|k)Ty(k+2|k)Ty(k+P|k)T]T,
ΔUM(k)=[Δu(k)TΔu(k+1)TΔu(k+M1)T]T.
可得多步预测方程:
YP(k)=Fx(k|k)+ΦΔUM(k). (3)
其中:
F=[CACA2CA3CAP],
Φ=[CBCABCBCA2BCABCBCAP1BCAP2BCAP3BCAPMB].
在每一采样时刻k,预测控制通过如下优化问题,确定未来M个连续的控制序列ΔUM(k):
minΔUM(k)J(k)=YrYP2Qy+ΔUM(k)2QΔu,s.t.{YP(k)=Fx(k|k)+ΦΔUM(k),UminUM(k)Umax. (4)
其中: UminUmax分别是控制变量的上限和下限约束, Qy是被控变量的加权矩阵, QΔu是控制增量的加权矩阵。
2 基于FPAA模拟神经网络的QP求解2.1 基于神经网络的QP求解MPC的在线优化问题式(4)可以转化为如下所示的标准QP问题:
minxQPJ(xQP)=12xTQPWxQP+cTxQP,s.t.lExQPh. (5)
其中:xQPRn为决策变量,WRn×n且为对称正定矩阵,CRn,ERp×n,l,hRp
目前,MPC广泛采用的传统数值解法有内点法(interior-point method,IPM)和积极集法(active set method,ASM)。但是,传统数值解法大多涉及矩阵求逆、分解等操作,因此占用资源较多、实时性较低且实现相对复杂。神经网络具有天然并行性、自适应性和电路可实现性的优势,为实时求解大规模的QP问题提供了新的途径。本文采用由Liu等[9]提出的SDNN。
式(5)所对应的SDNN模型为
{εdvdt=ExQP+g(ExQPv),xQP=Pvs. (6)
定理1??SDNN模型具有Lyapunov意义下的稳定性,且全局收敛至平衡状态点v*[9]
定理2??SDNN模型的平衡输出xQP*=Pv* s是QP(式(5))的最优解。其中v*是SDNN模型的平衡状态点[9]
基于定理1和定理2,可知对偶神经网络模型(式6)全局收敛至QP(式5)的最优解。因此,利用SDNN便能够求解MPC中的QP问题。
对于神经网络来求解QP问题,传统的做法是将其进行离散化,离散化方法包括Euler法、Runge-Kutta法等,然后通过数字电路来实现。但是,SDNN经过离散化后存在收敛性问题,且其收敛性受步长的影响;另外,在单核实现方式下,离散SDNN算法退变为串行计算,没有了网络的并行优势。因此,求解速度相对传统数值解法提升有限。连续神经网络没有前述问题,因此本文研究连续SDNN的模拟电路实现方式。
2.2 基于FPAA的模拟电路实现FPAA具有模拟电路经济、简洁、低功耗以及高速的优点,且支持在线编程。因此,可方便地实现相应的模拟电路功能。
FPAA基于开关电容技术,其核心是可编程模拟单元(configurable analog block,CAB),如图 1所示。
图 1 FPAA结构示意图
图选项





它的基本结构与可编程逻辑器件类似。其中,配置逻辑通过串、并行总线的在线系统编程(in-system programmability,ISP)方式接收外部输入的配置数据,然后存入存储器。输入、输出单元负责对输入、输出信号进行驱动与偏置。CAB通常由放大器和外围电容、电阻、开关等构成。其中配置数据可以控制各元件的取值及相互连接关系,从而以多种CAB的组合来实现用户需要的模拟电路功能。基于FPAA的模拟电路设计的具体过程如图 2所示。
图 2 基于FPAA的模拟电路设计流程
图选项





目前,FPAA已被广泛用于模拟计算、信号调理、电路实验、仪器仪表等低成本、低功耗、小型化电子系统的设计与实现等方面。在模拟领域中展现出了巨大的潜力。
2.3 连续神经网络的FPAA实现对于MPC的优化命题式(4),其对应的QP问题的参数为
{xQPΔUM(k)RnuM,W=2(ΦTQyΦ+QΔu)RnuM×nuM,E=BuRnuM×nuM.c=2[ΦTQy(Yr(k)Fx(k|k))]RnuM,l=UminU(k1)RnuM,h=UmaxU(k1)RnuM.
由上式可以看出,WE是固定不变的,而clh是随时间变化的参数。
由于模拟电路本身存在工作电压范围的限制,以及不同的模拟元器件也都存在或多或少的限制。因此,需要对这些限制进行分析,结合FPAA中的模拟元器件参数的限制,可以得到如下应满足的要求:
1) 电路中传递的电信号(电压)要处于工作电压范围内:式(6)中 sxQPv的各元素取值范围在-3~3 V;式(6)中矩阵运算乘积(如ExQP等)的各元素取值范围在-3~3 V;|l|、|h|各元素绝对值取值范围在0.05~3 V;
2) 电路中模拟元器件参数的设置要满足一定的条件:|l|=|h|,即饱和环节g(z)关于原点呈中心对称;EP各元素绝对值取值范围在可调节范围内。
针对上述要求,显然QP(式(5))不总是满足|l|=|h|。因此,本文首先对饱和环节g(z)进行平移变换,使得g(z)关于原点呈中心对称。
2.3.1 平移变换对于QP (式5),令
a=hl2,Δ=l+h2.
因此,式(5)可以等价转换为
minxQPJ(xQP)=12xTQPWxQP+cTxQP,s.t.aExQPΔa. (7)
式(7)是平移变换后的QP问题,称作平移QP。对应的简化对偶神经网络(称作平移SDNN)为
状态方程:
εdydt=ExQP+Δ+g(ExQPΔv); (8)
输出方程:
xQP=Pvs. (9)
2.3.2 尺度变换经过上述平移变换后,饱和环节g(z)关于原点呈中心对称,满足要求|l|=|h|。但是,平移SDNN中各元素仍然不能总是满足绝对值取值范围在可调节范围内,需要进行尺度变换。
对于平移QP(式7),引入尺度变换因子μμ是正标量。式(7)的目标函数乘以μ2,约束条件两边同乘以μ,可得如下等价的QP问题:
minxQPJ(xQP)=12μxTQPWμxQP+μcTμxQP,s.t.μaEμxQPμΔμa. (10)

˜xQP=μxQP,˜c=μc,˜Δ=μΔ,˜a=μa.
代入式(10),可得如下尺度QP问题:
min˜xQPJ(˜xQP)=12˜xTQPW˜xQP+˜cT˜xQP,s.t.aE˜xQP˜Δ˜a. (11)
对应的简化对偶神经网络(称作尺度SDNN)为
状态方程:
εd˜vdt=E˜xQP+Δ+g(E˜xQP˜Δ˜v); (12)
输出方程:
˜xQP=P˜v˜s. (13)
尺度SDNN和平移SDNN的变量关系为
˜xQP=μxQP,˜Δ=μΔ,˜s=μs,˜v=μv.
综上,SDNN首先经平移变换后得到平移SDNN,然后经尺度变换后得到尺度SDNN,尺度SDNN的输出和SDNN的输出呈比例关系。因此,尺度SDNN的输出经尺度反变换即可得到SDNN的输出,即平移变换和尺度变换前QP的最优解。
3 基于FPAA的预测控制软硬件设计本节将FPAA模拟电路实现的连续神经网络用于MPC中,给出了FPAA模拟神经网络预测控制的软硬件设计方法。下面将分别介绍硬件部分和软件部分。
3.1 硬件部分硬件平台架构如图 3所示。采用Anadigm公司生产的FPAA以及Anadigm公司提供的AnadigmDesigner2 IDE,通过多个FPAA级联的方式,实现求解QP的模拟电路,简称模拟电路QP求解器。同时,为了实现完整的MPC仿真,数字控制部分是基于上位机实现的。由于模拟部分和数字部分之间需要进行数据传输,因此采用数据采集卡作为两者的接口电路,该数据采集卡同时具备DA/AD功能。
图 3 硬件平台架构示意图
图选项





3.2 软件部分软件部分如图 4所示。MPC主程序采用Visual Studio的MFC应用程序实现。上位机和数据采集卡、上位机和FPAA开发板之间采用串口通信方式来传输数据。为了实现数据采集卡的数据传输功能,需要提供数据采集卡驱动并封装成DLL。为了实现模拟电路在线更新功能,利用AnadigmDesigner2生成C Code版本的FPAA驱动API。MATLAB提供C/C++编译器,可以将编写好的M函数编译成DLL文件供MPC主程序调用。
图 4 软件架构示意图
图选项





MPC主程序采用本节设计的模拟电路来求解QP问题。基于FPAA模拟神经网络的快速模型预测控制算法详细步骤如下。
步骤1??k=0。判断是否初始化,若是,进行初始化工作,跳至步骤3;若不是,跳至步骤2。
步骤2??更新状态变量和输出变量,反馈校正。
步骤3??通过无约束优化,获得解析解ΔUM(k):ΔUM(k)=(ΦTQyΦ|Φ+QΔu)1ΦTQy(Yr(k)Fx(k|k))
步骤4??判断ΔUM(k)是否满足全部的约束条件,若满足,跳至步骤8;若不满足,跳至步骤5。
步骤5??模拟电路求解QP。
a) 平移变换,得到平移SDNN;
b) 尺度变换,得到尺度SDNN;
c) 上位机通过DA模块输出模拟电压至模拟电路,以电压形式输出的参数包括 sΔ
步骤6??对QP决策变量Δ˜UM(k)进行采样。
a) AD模块采样时刻i=1;
b) 对QP决策变量Δ˜UM(k)进行AD采样,记作Δ˜UM(k),表示对Δ˜UM(k)的第i次采样得到的量,采样频率为500 kHz;
c)计算相对误差:
error={Δ˜U(i)M(k)Δ˜U(i1)M(k)Δ˜U(i1)M(k),Δ˜U(i1)M(k)0;Δ˜U(i)M(k)Δ˜U(i1)M(k),Δ˜U(i1)M(k)=0.
error={Δ˜U(i)M(k)Δ˜U(i1)M(k)Δ˜U(i1)M(k),Δ˜U(i1)M(k)0;Δ˜U(i)M(k)Δ˜U(i1)M(k),Δ˜U(i1)M(k)=0.
其中
Δ˜U(0)M(k)=P˜v(0)+˜s.
d) 判断error≤εQP是否满足,若满足,跳至步骤7;若不满足,跳至e);
e) i=i+1,跳至b)。
步骤7??尺度反变换得到原尺度下的QP决策变量ΔUM(k):
ΔUM(k)=1μΔ˜UM(k).
步骤8??获取即时控制增量Δu(k),计算控制量u(k)。
步骤9??k=k+1,跳至步骤2。
4 实例仿真与分析为了进一步验证模拟电路QP求解器的应用效果,本文采用如下线性时不变系统[15]进行仿真。
[y1y2]=[2s2+2s+21s+13s2+4s+81s2+2s+5][u1u2].
控制参数为预测时域P=10, 控制时域M=2, 采样时间为0.02 s; 控制量的约束为|u1(k)|≤10、|u2(k)|≤6。该MIMO系统的MPC优化控制过程中,每个时刻求解的QP问题为
minΔUM(k)J(ΔUM(k))=12ΔUM(k)TWΔUM(k)+cTΔUM(k),s.t.lEΔUM(k)h
对应的SDNN为
{εdvdt=EΔUM(k)+g(EΔUM(k)v),ΔUM(k)=Pvs.
其中:
W=[0.20180.00440.00140.00380.00440.22660.00340.02290.00140.00340.20110.00300.00380.02290.00300.2199],
E=[1000010010100101],
P=[4.95960.08824.92760.16510.08824.46340.15644.00090.03200.06824.94250.12800.07690.46250.13674.1349].
同样,因为|l|≠|h|,需要进行平移变化,可得a=(h-l)/2, Δ=(h+l)/2。又因为a=[10 6 10 6]T,需要尺度变化。这里采用尺度变换因子法,尺度变换因子μ=0.2。
在AnadigmDesigner2中搭建电路原理图,如图 5所示。然后,利用simulator进行仿真验证,可得初始时刻对应的QP求解结果,如图 6所示。其中,4个通道(channel1、channel2、channel3、channel4)分别代表Δu1(k)、Δu1(k+1)、Δu2(k)、Δu2(k+1)。因为尺度变化因子μ=0.2,所以模拟电路QP求解器得到的最优解为(0.446 3,2.138 0,0.332 8,1.734 3),与MATLAB中的QuadProg QP求解器得到的最优解(0.446 3,2.138 0,0.332 8,1.734 3)是一致的。
图 5 基于FPAA的模拟电路原理图
图选项





图 6 AnadigmDesigner2的simulator仿真
图选项





接下来分别采用本文设计的模拟电路QP求解器和QuadProg QP求解器进行MIMO系统的MPC优化控制,可得仿真结果如图 79所示。
图 7 输出曲线的比较
图选项





图 8 输入曲线的比较
图选项





图 9 QP求解时间的比较
图选项





上述仿真结果显示,采用模拟电路QP求解器MPC仿真和采用QuadProg QP求解器的MPC仿真的结果几乎是一致的。平均求解时间如表 1所示。
表 1 模拟电路QP求解器与QuadProg QP求解器比较
求解器 平均求解时间
模拟电路QP求解器 58.36 μs
QuadProg QP求解器 3.32 ms


表选项






采用模拟电路QP求解器与采用QuadProg QP求解器的MPC之间的误差如图 10所示。图中显示模拟电路QP求解器相对于QuadProg QP求解器,在求解QP时存在大约3.91%的误差。
图 10 模拟电路QP求解器与QuadProg QP求解器的误差
图选项





模拟电路QP求解器的误差来源很多,主要可分为噪声干扰、DA/AD的模拟/数字量化误差、导线的压降、温度漂移以及电路元器件固有的误差等。这里重点考查饱和环节参数的偏差与元器件参数的舍入误差对实验结果的影响, 如图 1112所示。
图 11 SDNN模型参数的舍入误差对仿真结果的影响
图选项





图 12 饱和环节的偏差对仿真结果的影响
图选项





由仿真结果可知,在模拟电路QP求解器的误差来源中,参数舍入误差、饱和环节参数偏差是影响比较大的。因此,通过提高参数的精度以及减小饱和环节的偏差,可进一步提高模拟电路QP求解器的精度。
5 结论本文提出了利用模拟神经网络求解预测控制在线过程中的QP问题。针对离散SDNN的缺点,提出了基于FPAA模拟神经网络的快速模型预测控制算法,有效规避了步长选择问题,且保证了神经网络的天然并行性。针对FPAA模拟电路信号限制,提出了平移变化方法和尺度变化方法,使得本文设计的模拟电路QP求解器的通用性显著提高。同时,给出了FPAA模拟神经网络预测控制软硬件设计方法并进行了实验验证。实验结果表明:本文提出的算法具有更快的求解速度。最后,对模拟电路进行了误差分析,指出了进一步提高模拟电路QP求解器精度的方向。

参考文献
[1] HOPFIELD J J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10): 3088-3092. DOI:10.1073/pnas.81.10.3088
[2] KENNEDY M P, CHUA L O. Neural networks for nonlinear programming[J]. IEEE Transactions on Circuits and Systems, 1988, 35(5): 554-562. DOI:10.1109/31.1783
[3] RODRIGUEZ-VAZQUEZ A, DOMINGUEZ-CASTRO R, RUEDA A, et al. Nonlinear switched capacitor "neural" networks for optimization problems[J]. IEEE Transactions on Circuits and Systems, 1990, 37(3): 384-398. DOI:10.1109/31.52732
[4] ZHANG S, CONSTANTINIDES A G. Lagrange programming neural networks[J]. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing, 1992, 39(7): 441-452. DOI:10.1109/82.160169
[5] HAM F M, KOSTANIC I. Principles of neurocomputing for science and engineering[M]. New York, USA: McGraw-Hill Higher Education, 2000.
[6] HU X L, ZHANG B. A new recurrent neural network for solving convex quadratic programming problems with an application to the k-winners-take-all problem[J]. IEEE Transactions on Neural Networks, 2009, 20(4): 654-664.
[7] XIA Y S, FENG G, WANG J. A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations[J]. Neural Networks, 2004, 17(7): 1003-1015. DOI:10.1016/j.neunet.2004.05.006
[8] ZHANG Y N, WANG J. A dual neural network for convex quadratic programming subject to linear equality and inequality constraints[J]. Physics Letters A, 2002, 298(4): 271-278. DOI:10.1016/S0375-9601(02)00424-3
[9] LIU S B, WANG J. A simplified dual neural network for quadratic programming with its KWTA application[J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1500-1510. DOI:10.1109/TNN.2006.881046
[10] DENNIS J B. Mathematical programming and electrical networks[D]. Cambridge, USA: Massachusetts Institute of Technology, 1959.
[11] CHUA L, LIN G N. Nonlinear programming without computation[J]. IEEE Transactions on Circuits and Systems, 1984, 31(2): 182-188. DOI:10.1109/TCS.1984.1085482
[12] VICHIK S, BORRELLI F. Solving linear and quadratic programs with an analog circuit[J]. Computers & Chemical Engineering, 2014, 70: 160-171.
[13] TANK D W, HOPFIELD J J. Simple "neural" optimization networks:An A/D converter, signal decision circuit, and a linear programming circuit[J]. IEEE Transactions on Circuits and Systems, 1986, 33(5): 533-541. DOI:10.1109/TCS.1986.1085953
[14] VICHIK S, ARCAK M, BORRELLI F. Stability of an analog optimization circuit for quadratic programming[J]. Systems & Control Letters, 2016, 88: 68-74.
[15] JIAN L, LI D W, XI Y G. Implementation of dynamic matrix control on FPGA[C]//Proceedings of the 29th Chinese Control Conference (CCC). Beijing, China: IEEE, 2010: 5970-5974.

闂傚倷娴囬褏鈧稈鏅犻、娆撳冀椤撶偟鐛ラ梺鍦劋椤ㄥ懐澹曟繝姘厵闁告挆鍛闂佹娊鏀遍崹鍫曞Φ閸曨垰绠涢柛鎾茬劍閸嬔囨⒑绾懏顥夐柣鈽嗘珋闂傚倸鍊搁崐鐑芥倿閿旈敮鍋撶粭娑樻噽閻瑩鏌熼悜姗嗘畷闁稿孩顨嗛妵鍕棘閸喒鎸冮梺鍛婎殕瀹€鎼佸蓟濞戙垹绠绘俊銈傚亾闁硅櫕鍔欓幃锛勨偓锝庡枟閸婂灚顨ラ悙鑼虎闁告梹宀搁弻锝呂旈埀顒勫疮閺夋垹鏆﹂柟杈剧畱缁犲鎮归崶顏勭毢妞わ负鍔岄—鍐Χ閸涱垳顔囧┑鈽嗗亝椤ㄥ﹪骞冮垾鏂ユ闁靛繆妾ч幏娲⒑缁嬭法绠伴柛姘儑濞嗐垽寮婚妷锔惧幈闂佺粯姊绘灙闁崇粯娲熼弻鐔碱敍濞嗘垵濡介悗鍨緲鐎氼喗绂掗敃鍌氱畾鐟滃酣鎮楅銏♀拻濞达綀娅i妴濠囨煕閹惧绠栫紒妤冨枎铻栭柛娑卞幗鏉堝牓姊洪棃娑辨Т闁哄懏绮撻崺娑㈠箳濡や胶鍘卞┑鐐村灥瀹曨剟鐛Ο鑲╃<闁绘瑥鎳愰幃鑲╃磼鏉堛劌绗уù鐙呯畵閹墽浠﹂悾灞藉箺闂傚倷娴囬鏍垂閺夋5娲Ω閳轰胶鍔﹀銈嗗笒閿曪箓宕氶弶娆剧唵鐟滃秴霉妞嬪骸鍨濋柛顐ゅ枎缁剁偤鎮楅敐搴′簻鐎殿喖娼″娲箰鎼达絿鐣甸梺纭呮珪閸旀鍒掓繝姘煑濠㈣泛鐬奸惁鍫ユ⒑闁偛鑻晶鎾煙椤斻劌娲ら柋鍥煃閸ㄦ稒娅嗛柣蹇撳暣閺岋絾鎯旈敍鍕殯闂佺ǹ閰f禍鍫曠嵁婵犲啯鍎熼柕濠忕畱娴滄姊虹粙鎸庢拱闁糕晛鍟嵄闁割偁鍎查悡娆戠磽娴i潧鐏╅柣蹇曞Т闇夋繝濠傜墢閻g儤鎱ㄦ繝鍐┿仢鐎规洏鍔嶇换婵嬪磼濠婂懏鍣┑鐘殿暯濡插懘宕戦崨顖涘床闁割偁鍎冲畵渚€鏌熼幍顔碱暭闁哄懏鎮傞弻銊╂偆閸屾稑顏�
547闂傚倸鍊搁崐椋庣矆娴i潻鑰块梺顒€绉查埀顒€鍊圭粋鎺斺偓锝庝簽閿涙盯姊洪悷鏉库挃缂侇噮鍨堕崺娑㈠箳濡や胶鍘遍梺鍝勬处椤ㄥ棗鈻嶉崨瀛樼厽闊浄绲奸柇顖炴煛瀹€瀣埌閾绘牠鏌嶈閸撶喖寮绘繝鍥ㄦ櫜濠㈣泛锕﹂悿鍥⒑鐟欏嫬绀冩い鏇嗗懐鐭嗛柛鎰ㄦ杺娴滄粓鐓崶銊﹀鞍妞ゃ儲绮撻弻锝夊箻鐎靛憡鍒涘┑顔硷攻濡炶棄鐣峰Δ鍛闁兼祴鏅涢崵鎺楁⒒娴e憡鎲搁柛锝冨劦瀹曟垿宕熼娑樹患闂佺粯鍨兼慨銈夊疾閹间焦鐓ラ柣鏇炲€圭€氾拷1130缂傚倸鍊搁崐鎼佸磹妞嬪海鐭嗗〒姘e亾閽樻繃銇勯弽銊х煂闁活厽鎹囬弻锝夊閵忊晜姣岄梺绋款儐閹瑰洤鐣疯ぐ鎺濇晝闁挎繂娲﹂濠氭⒒娓氣偓閳ь剛鍋涢懟顖涙櫠閸欏浜滄い鎰╁焺濡叉椽鏌涢悩璇у伐妞ゆ挸鍚嬪鍕節閸愵厾鍙戦梻鍌欑窔閳ь剛鍋涢懟顖涙櫠閹绢喗鐓涢悘鐐登规晶鑼偓鍨緲鐎氼噣鍩€椤掑﹦绉靛ù婊勭矒閿濈偞鎯旈埦鈧弨浠嬫煟閹邦垰鐨哄褎鐩弻娑㈠Ω閵壯傝檸闂佷紮绲块崗姗€寮幘缁樺亹闁肩⒈鍓﹀Σ浼存煟閻斿摜鐭婄紒缁樺笧閸掓帒鈻庨幘宕囧€為梺鍐叉惈閸熶即鏁嶅⿰鍕瘈闁靛骏绲剧涵楣冩煥閺囶亪妾柡鍛劦濮婄粯鎷呴崨濠傛殘闁煎灕鍥ㄧ厱濠电姴鍟版晶杈╃磽閸屾稒宕岄柟绋匡攻缁旂喖鍩¢崒娑辨閻庤娲︽禍婵嬪箯閸涱垱鍠嗛柛鏇ㄥ幗琚欓梻鍌氬€风粈浣革耿闁秴鍌ㄧ憸鏃堝箖濞差亜惟闁宠桨鑳堕鍥⒑閸撴彃浜濇繛鍙夌墵閹偤宕归鐘辩盎闂佺懓顕崑娑㈩敋濠婂懐纾煎ù锝呮惈椤eジ鏌曢崶褍顏い銏℃礋婵偓闁宠桨绀佹竟澶愭⒒娴g懓顕滅紒瀣浮瀹曟繂鈻庨幘璺虹ウ闁诲函缍嗛崳顕€寮鍡欑瘈濠电姴鍊规刊鍏间繆閺屻儲鏁辩紒缁樼箞閹粙妫冨☉妤佸媰闂備焦鎮堕崝宀€绱炴繝鍌ゅ殨妞ゆ劑鍊楅惌娆愪繆椤愩倖鏆╅柛搴涘€楅幑銏犫攽鐎n亞鍊為梺闈浨归崕鏌ヮ敇濞差亝鈷戦柛婵嗗濡叉悂鏌eΔ浣虹煉鐎规洘鍨块獮鎺懳旈埀顒勫触瑜版帗鐓涢柛鎰╁妿婢ф盯鏌i幘宕囩闁哄本鐩崺鍕礃閳哄喚妲烽梻浣呵圭换鎰版儔閼测晜顫曢柟鐑橆殢閺佸﹪鏌涜箛鎿冩Ц濞存粓绠栭幃娲箳瀹ュ棛銈板銈庡亜椤︾敻鐛崱娑樻閹煎瓨鎸婚~宥夋⒑閸︻厼鍔嬮柛銊ㄦ珪缁旂喖寮撮悢铏诡啎闁哄鐗嗘晶浠嬪箖婵傚憡鐓涢柛婊€绀佹禍婊堝础闁秵鐓曟い鎰Т閸旀粓鏌i幘瀛樼闁哄瞼鍠栭幃婊兾熺拠鏌ョ€洪梻浣呵归鍥ㄧ箾閳ь剟鏌$仦鐣屝ユい褌绶氶弻娑滅疀閺冨倶鈧帗绻涢崱鎰仼妞ゎ偅绻勯幑鍕洪鍜冪船婵犲痉鏉库偓褏寰婃禒瀣柈妞ゆ牜鍋涚粻鐘虫叏濡顣抽柛瀣崌閻涱噣宕归鐓庮潛闂備礁鎽滈崰鎾寸箾閳ь剛鈧娲橀崹鍧楃嵁濡皷鍋撳☉娅亪顢撻幘缁樷拺缂備焦锚閻忥箓鏌ㄥ鑸电厓鐟滄粓宕滃☉銏犵;闁绘梻鍘ч悞鍨亜閹烘垵鏋ゆ繛鍏煎姍閺岀喖顢欓懖鈺佺厽閻庤娲樺ú鐔笺€佸☉銏″€烽柤纰卞墮婵附淇婇悙顏勨偓鏍垂婵傜ǹ纾垮┑鐘宠壘缁€鍌炴倶閻愭澘瀚庡ù婊勭矒閺岀喖骞嗚閹界娀鏌涙繝鍐ㄥ闁哄瞼鍠栭、娆撴嚃閳轰胶鍘介柣搴ゎ潐濞茬喐绂嶉崼鏇犲祦闁搞儺鍓欐儫闂侀潧顦崐鏇⑺夊顑芥斀闁绘劘鍩栬ぐ褏绱掗懠顒€浜剧紒鍌氱Ч閹崇偤濡疯濞村嫰姊洪幐搴㈢5闁稿鎹囧Λ浣瑰緞閹邦厾鍘遍棅顐㈡处濞叉牜鏁崼鏇熺厵闁稿繐鍚嬮崐鎰版煛鐏炵晫啸妞ぱ傜窔閺屾稖绠涢弮鍌楁闂傚洤顦甸弻娑㈠Ψ椤旂厧顫╃紒鐐劤閵堟悂寮婚弴鐔虹瘈闊洦娲滈弳鐘差渻閵堝棙绀夊瀛樻倐楠炲牓濡搁妷搴e枔缁瑩宕归纰辨綍闂傚倷鑳舵灙妞ゆ垵妫濋獮鎰節濮橆剛顔嗛梺鍛婁緱閸ㄩ亶宕伴崱娑欑厱闁哄洢鍔屾晶浼存煛閸℃ê鍝烘慨濠勭帛閹峰懘宕崟顐$帛闁诲孩顔栭崰妤呭磿婵傜ǹ桅闁圭増婢樼粈鍐┿亜韫囨挻顥犲璺哄娣囧﹪濡惰箛鏇炲煂闂佸摜鍣ラ崹璺虹暦閹达附鍋愮紓浣贯缚閸橀亶姊洪弬銉︽珔闁哥噥鍋呴幈銊╁焵椤掑嫭鈷戠紒瀣儥閸庢劙鏌熺粙娆剧吋妤犵偛绻樺畷銊р偓娑櫭禒鎯ь渻閵堝棛澧柤鐟板⒔缁骞嬮敂瑙f嫽婵炶揪绲介幉锟犲箚閸儲鐓曞┑鐘插閸︻厼寮查梻渚€娼х换鍫ュ磹閺囥垺鍊块柛顭戝亖娴滄粓鏌熺€电ǹ浠滄い鏇熺矌缁辨帗鎷呯憴鍕嚒濡炪値鍙€濞夋洟骞夐幘顔肩妞ゆ巻鍋撶痪鐐▕閹鈻撻崹顔界亾闂佽桨绀侀…鐑藉Υ娴g硶妲堟俊顖涚矌閸犲酣鎮鹃埄鍐跨矗濞达絽澹婂Λ婊勭節閻㈤潧浠╅柟娲讳簽缁辩偤鍩€椤掍降浜滄い鎰╁焺濡偓闂佽鍣换婵嬪春閳ь剚銇勯幒鎴濐仾闁抽攱甯¢弻娑氫沪閹规劕顥濋梺閫炲苯鍘哥紒顔界懇閵嗕礁鈻庨幇顔剧槇闂佸憡娲﹂崜锕€岣块悢鍏尖拺闁告挻褰冩禍婵囩箾閸欏澧辩紒顔垮吹缁辨帒螣闂€鎰泿闂備礁婀遍崑鎾翅缚濞嗘拲澶婎潩閼哥數鍘遍柣搴秵閸嬪懐浜告导瀛樼厵鐎瑰嫮澧楅崵鍥┾偓瑙勬礈閸忔﹢銆佸Ο琛℃敠闁诡垎鍌氼棜濠电姷鏁告慨鏉懨洪敃鍌氱9闁割煈鍋嗙粻楣冩煙鐎涙ḿ绠橀柡瀣暟缁辨帡鍩€椤掑倵鍋撻敐搴℃灍闁绘挸鍟伴幉绋库堪閸繄顦у┑鐐村灦濮樸劑鎯岄崱妞曞綊鏁愰崼鐔粹偓鍐煟閹烘埊韬柡宀€鍠庨埢鎾诲垂椤旂晫浜愰梻浣呵归鍡涘箰閹间礁鐓″璺哄閸嬫捇宕烽鐐愩儲銇勯敂鍨祮婵﹥妞介弻鍛存倷閼艰泛顏梺鍛娒幉锛勬崲濞戙垹绾ч柟瀵稿仜閺嬬姴顪冮妶鍐ㄧ仾闁挎洏鍨归悾鐑筋敃閿曗偓鍞悷婊冪灱缁厽寰勬繛鐐杸闁圭儤濞婂畷鎰板箻缂佹ê鈧潡鏌ㄩ弮鈧畷妯绘叏閾忣偅鍙忔俊顖氱仢閻撴劙鏌i幘宕囩闁哄本鐩崺鍕礃閳哄喚妲舵俊鐐€х拋锝嗕繆閸ヮ剙鐒垫い鎺嗗亾婵犫偓鏉堛劎浠氭俊鐐€ら崢濂稿床閺屻儲鍋╅柣鎴eГ閺呮煡鏌涢妷顖炴闁告洖鍟村铏圭矙閹稿孩鎷卞銈冨妼閹冲繒绮嬪澶婄畾妞ゎ兘鈧磭绉洪柡浣瑰姍瀹曘劑顢欓崗鍏肩暭闂傚倷绀侀幉鈥趁洪悢铏逛笉闁哄稁鍘奸拑鐔兼煥濠靛棭妲归柛濠勫厴閺屾稑鈻庤箛锝嗏枔濠碘槅鍋呴崹鍨潖濞差亝鐒婚柣鎰蔼鐎氫即鏌涘Ο缁樺€愰柡宀嬬秮楠炴帡鎮欓悽鍨闁诲孩顔栭崳顕€宕滈悢椋庢殾闁圭儤鍩堝ḿ鈺呮煥濠靛棙顥犻柛娆忓暞缁绘繂鈻撻崹顔界亾闂佺娅曢幐鍝ュ弲闂佺粯枪椤曆呭婵犳碍鐓欓柟顖嗗懏鎲兼繝娈垮灡閹告娊寮诲☉妯锋婵鐗婇弫楣冩⒑闂堚晝绋婚柟顔煎€垮濠氭晲閸℃ê鍔呴梺闈涚箳婵挳寮稿▎鎾寸厽闁绘ê鍟挎慨澶愭煕閻樺磭澧电€规洘妞介崺鈧い鎺嶉檷娴滄粓鏌熺€电ǹ浠滄い鏇熺矋閵囧嫰鏁冮崒銈嗩棖缂備浇椴搁幐鎼侇敇婵傜ǹ妞藉ù锝嚽规竟搴ㄦ⒒娴d警鏀版繛鍛礋閹囨偐鐠囪尙鐤囬梺缁樕戝鍧楀极閸℃稒鐓曢柟閭﹀枛娴滈箖鏌﹂幋婵愭Ш缂佽鲸鎹囧畷鎺戔枎閹存繂顬夐梻浣告啞閸旀洟鈥﹂悜鐣屽祦闊洦绋掗弲鎼佹煥閻曞倹瀚�28缂傚倸鍊搁崐鎼佸磹妞嬪孩顐介柨鐔哄Т绾捐顭块懜闈涘Е闁轰礁顑囬幉鎼佸籍閸稈鍋撴担鑲濇棃宕ㄩ闂寸盎闂備焦鍎崇换鎰耿闁秵鍋傞悗锝庡枟閳锋垿鎮峰▎蹇擃仾闁稿孩顨婇弻娑㈠Ω閵壯嶇礊缂備緡鍠栭悧濠勬崲閸涱厸鏋庣紒顖涚缁绘繈鎮介棃娑楁勃濠电偛鍚嬮悷鈺佺暦閵壯€鍋撻敐搴℃灍闁搞倕鑻灃闁挎繂鎳庨弳娆戠磼閻橀潧鏋涢柡灞熷棛鐤€闁挎繂鎳嶇花鍏肩節濞堝灝鐏¢柟鍛婂▕閻涱噣寮介‖銉ラ叄椤㈡鍩€椤掑嫬鐒垫い鎺嶇劍缁€鈧梺宕囩帛閹瑰洭寮幘缁樻櫢闁跨噦鎷�128.00闂傚倸鍊搁崐鐑芥嚄閼哥數浠氱紓鍌欒兌缁垶宕濆▎蹇曟殾闁哄绨卞Σ鍫熸叏濮楀棗寮炬繛鑲╁枛濮婅櫣鎹勯妸銉︾彚闂佺懓鍤栭幏锟�
相关话题/电路 控制

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于梯度特征的分布曲线模型预测控制算法
    王鑫,徐祖华,赵均,邵之江浙江大学控制科学与工程学院,流程生产质量优化与控制国际联合研究中心,杭州310027收稿日期:2018-10-10基金项目:国家重点研发计划(2017YFB0603703);国家自然科学基金-浙江两化融合联合基金项目(U1509209);国家自然科学基金项目(6177334 ...
    本站小编 Free考研考试 2020-04-15
  • 节能型异质汽车队列的切换式有界稳定控制
    辛喆1,张小雪1,陈海亮1,邵明玺1,徐晨翔1,李升波21.中国农业大学工学院,北京100083;2.清华大学汽车工程系,北京100084收稿日期:2018-05-04基金项目:国家自然科学基金资助项目(51575293,51622504);“十三五”国家重点研发计划课题项目(2016YFB0100 ...
    本站小编 Free考研考试 2020-04-15
  • 基于极点配置的逆变焊接电源最小拍控制及其稳定鲁棒性
    朱志明,符平坡,夏铸亮,程世佳清华大学机械工程系,先进成形制造教育部重点实验室,北京100084收稿日期:2018-07-04基金项目:国家自然科学基金面上项目(51775301)作者简介:朱志明(1964-),男,教授。E-mail:zzmdme@tsinghua.edu.cn摘要:最小拍控制律应 ...
    本站小编 Free考研考试 2020-04-15
  • 电动轮汽车转矩矢量控制系统试验平台
    陈浩1,袁良信2,孙涛3,郑四发1,2,连小珉11.清华大学汽车工程系,汽车安全与节能国家重点实验室,北京100084;2.清华大学苏州汽车研究院,苏州215200;3.苏州紫荆清远新能源汽车技术有限公司,苏州215200收稿日期:2018-06-21基金项目:苏州-清华创新引领行动专项(2016S ...
    本站小编 Free考研考试 2020-04-15
  • 基于改进GN算法的程序控制流图划分方法
    马锐,高浩然,窦伯文,王夏菁,胡昌振北京理工大学计算机学院,软件安全工程技术北京市重点实验室,北京100081收稿日期:2018-08-24基金项目:国家重点研发计划项目(2016QY07X1404)作者简介:马锐(1972-),女,副教授。E-mail:mary@bit.edu.cn摘要:针对控制 ...
    本站小编 Free考研考试 2020-04-15
  • 基于MIKPSO-SVM方法的工业控制系统入侵检测
    陈冬青1,张普含1,王华忠21.中国信息安全测评中心,北京100085;2.华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海200237收稿日期:2017-08-13基金项目:国家重点研发计划资助项目(2016YFB0800)作者简介:陈冬青(1982-),女,助理研究员。E-mail: ...
    本站小编 Free考研考试 2020-04-15
  • 基于最优轨迹的两挡无动力中断变速器控制方法
    台玉琢,宋健,卢正弘,方圣楠,NguyenTruongSinh清华大学汽车安全与节能国家重点实验室,北京100084收稿日期:2017-12-04作者简介:台玉琢(1993-),男,博士研究生通信作者:宋健,教授,E-mail:daesj@tsinghua.edu.cn摘要:为了改善电动汽车的动力性 ...
    本站小编 Free考研考试 2020-04-15
  • 基于时间延迟动态预测的自动驾驶控制
    赵建辉1,高洪波2,张新钰3,张颖麟41.清华大学计算机科学技术系,北京100084;2.清华大学汽车安全与节能国家重点实验室,北京100084;3.清华大学信息技术中心,北京100084;4.湖南大学汽车车身先进设计制造国家重点实验室,长沙410000收稿日期:2017-12-30基金项目:国家重 ...
    本站小编 Free考研考试 2020-04-15
  • 雷达共用型智能混合动力汽车节能控制策略
    解来卿1,2,张东好1,罗禹贡1,陈锐1,李克强11.清华大学汽车安全与节能国家重点实验室,北京100084;2.中国人民解放军陆军研究院,北京100012收稿日期:2017-09-20基金项目:国家重点研发计划(2016YFB0100905);国家自然科学基金重点项目(U1564208);北京市科 ...
    本站小编 Free考研考试 2020-04-15
  • 基于信息交互的大规模电动汽车充电路径规划
    张书玮1,冯桂璇1,2,樊月珍2,万爽1,2,罗禹贡11.清华大学汽车安全与节能国家重点实验室,北京100084;2.北京林业大学工学院,北京100083收稿日期:2017-08-20基金项目:国家“九七三”重点基础研究发展计划(2013CB228202);国家自然科学基金资助项目(U1564208 ...
    本站小编 Free考研考试 2020-04-15