删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

大迎角非定常气动参数辨识研究

本站小编 Free考研考试/2020-04-15

张婉鑫 , 朱纪洪
清华大学 计算机科学与技术系, 北京 100084

收稿日期:2016-12-09
基金项目:国家自然科学基金资助项目(61673240,61603210)
作者简介:张婉鑫(1989—), 女, 博士研究生
通信作者:朱纪洪, 教授, E-mail:jhzhu@tsinghua.edu.cn

摘要:针对现有模型在非定常气动参数辨识中存在的局限性,该文对大迎角机动过程非定常气动特性进行了研究,提出了一种建模方法。该方法结合物理机理,以广义气动导数模型为基础,受到Wiener模型建模思想的启发,建立了动态特性和静态特性分解的模块化级联模型。通过平方相关系数评价各模型项对非定常特性的贡献,确定最终模型结构,并给出了参数估计中相关的数据处理方法。用类F-22模型的风洞试验数据验证了提出的辨识方法,结果表明:模型辨识精度高,相对误差可控制在5%以内,可以有效地描述工程中非定常气动参数。
关键词:非定常气动力大迎角建模参数辨识风洞试验气动导数模块化平方相关系数
Unsteady aerodynamic identification of aircraft at high angles of attack
ZHANG Wanxin, ZHU Jihong
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China


Abstract: Existing models cannot accurately identify aircraft at high angles of attack due to the unsteady aerodynamic characteristics high angle of attack flight. This paper presents a model using a dynamic block with a static block based on a general aerodynamic derivatives model, which was inspired by the modelling structure of the Wiener model. The model identification is then based on a squared correlation coefficient that estimates the contribution of each model term. The data processing procedure for the parameter estimations is given. Wind tunnel tests with a model similar to an F-22 are used to verify the method. The results show that the method is able to accurately identify the unsteady aerodynamic parameters with a relative error below 5%. The model can effectively describe the unsteady aerodynamic parameters.
Key words: unsteady aerodynamichigh angles of attackmodelingparameter identificationwind tunnel testaerodynamic derivativeblock orientedsquared correlation coefficient
现代战斗机要求具有高机动性和机敏性,扩大机动飞行的迎角范围是十分必要的。通过大迎角和过失速机动,飞机可在很短的时间和较小的空间内完成姿态和方向的大幅度改变,为战斗机进行空战时飞行员快速调转机头、完成机头指向瞄准创造条件。为了使战斗机可靠地完成大迎角机动动作,对飞机大迎角气动力参数的描述至关重要,通过对气动特性动态特征的控制和利用,可以提高飞机机动能力。
当前对战斗机非定常气动力的研究主要依靠风洞试验,国内外气动研究机构展开大量用于非定常气动特性研究的风洞试验[1-4],获取非线性非定常气动数据,然后对大迎角气动特性进行分析,通过参数辨识的方法建立非线性非定常气动力的数学模型。
结合风洞试验对大迎角非定常气动参数建模成为近年来国内外****的研究重点。目前主要有结合物理机理建立数学模型和脱离物理机理建立人工智能模型两类建模方法[5]。在实际应用中,更多地采用前者,因为后者包含更多的不确定性,并且不便于飞机性能的分析与控制系统的设计。结合物理机理对非定常气动力建模是在传统的线性气动导数模型基础上发展起来的一系列方法,包括Fourier分析建模[6]、减缩频率模型[7]、阶跃响应模型[8-9]、状态空间模型[10-11]、微分方程模型[12-13]等。
上述模型基于不同的假设条件,在实际应用中存在着各自的局限性,例如阶跃响应模型结构过于复杂导致的不可辨识性,状态空间模型由于辨识参数过多导致的有限的试验数据无法满足辨识过程中的充分激励条件等。本文基于机理分析,从应用于小迎角飞行的成熟气动导数模型出发,建立了非定常气动力的模块化级联模型,并研究了相应的辨识方法。该模型结构受到广泛应用于非线性系统的Wiener模型思路的启发,具有清晰的物理意义,能够更广泛地应用于非定常气动力的辨识,不会受到试验条件的限制,并且模型结构简单。最后通过类F-22的风洞试验数据验证了模型的有效性。
本文忽略多自由度耦合效应对气动力产生的影响,重点研究单自由度运动时气动力关于飞行状态的非定常特性,而多自由度耦合运动中的影响是下一步研究工作的重点。
1 气动导数模型气动导数模型广泛应用于小迎角范围,1903年由Bryan首次提出,在小扰动假设下取Taylor级数展开式一阶线性近似得到[5]。1920年,研究****发现机翼产生的下洗气流作用于尾翼的滞后效应对气动力的影响不可忽略,因此在模型中加入气动力关于迎角变化率$\dot \alpha $的展开项[5]。以升力系数为例,传统的气动导数模型具有如下形式:
$\begin{array}{*{20}{l}} {{C_{\text{L}}} = {C_{{\text{L}},{\text{st}}}}\left( \alpha \right) + {C_{{\text{L}},\hat q}}\hat q + {C_{{\text{L}},\hat {\dot \alpha} }}\hat {\dot \alpha} + {C_{{\text{L}},{\delta _{\hat q}}}}{\delta _{\text{e}}};} \\ {\;\;\;\;\;\;\;\;\;\hat q = qc/V,\hat {\dot \alpha} = \dot \alpha c/V;} \\ {{C_{{\text{L}},\hat q}} = \partial {C_{\text{L}}}/\partial \hat q,{C_{{\text{L}},\hat {\dot \alpha} }} = \partial {C_{\text{L}}}/\partial \hat {\dot \alpha} ,{C_{{\text{L}},{\delta _{\text{e}}}}} = \partial {C_{\text{L}}}/\partial {\delta _{\text{e}}}.} \end{array}$ (1)
其中:CL, st为静态项, $\hat q $$\hat {\dot \alpha} $分别为无量纲俯仰角速率和迎角变化率, c为平均气动弦长, V为飞行速度, δe为升降舵偏转角, ${C_{{\rm{L, }}\hat q}}、{C_{{\rm{L, }}\hat {\dot \alpha} }}、{C_{{\rm{L, }}{\delta _{\rm{e}}}}} $为气动导数。当飞机迎角在平衡迎角附近小范围变化时,气动导数可近似为常数,因此气动导数模型是准定常模型。对于大迎角机动或快速机动的情形,无法满足小扰动条件,气动力呈现显著的非定常性,并且依赖于飞行状态的历史数据,线性定常模型不再适用。
考虑迎角变化的历史时刻信息对气动力大小的影响,气动力可以看作是迎角和迎角的多阶导数的函数,以升力系数为例,有
${C_{\rm{L}}}\left( t \right) = {C_{\rm{L}}}\left( {\alpha \left( t \right), \dot \alpha \left( t \right), \ddot \alpha \left( t \right), \cdots } \right).$ (2)
如果保留至一次项,得到稳定导数模型,同样适用于准定常条件,虽然变量中包含迎角的历史信息,但在描述气动力的非定常效应时却存在很大误差。通常将Taylor级数展开式取至高阶项,得到广义的气动导数模型即多项式模型,能够更好地近似非线性特征,现有的很多建模方法都是在这种思想的基础上发展起来的。
2 非定常气动特性分析在飞机作大迎角和过失速机动时,要求非常快速和大幅度的姿态变化,流场调整所需的时间滞后导致气动力无法与飞机的机动状态保持同步,出现非定常现象。例如迎角大幅度周期性变化时,分离的产生与恢复的滞后导致气动力与迎角的变化之间的关系形成迟滞曲线。因此,对气动参数的描述必须考虑时间的历史效应。此外,不同的振荡频率、振荡幅度以及平衡位置,直接影响迟滞环的大小,其中振荡频率的影响尤其显著,甚至会改变迟滞环的形状。
小迎角时,气流绕流为附着流,升力与迎角可以看成线性关系。然而,在大迎角的情况,绕流拓扑结构非常复杂,气动力关于飞行状态参数的动导数具有严重的非线性。随着迎角的增大,流态会发生改变,气流出现分离和分离涡,导致产生非线性的涡。
此外,与传统小迎角范围不同的是,在大迎角或过失速迎角下,机翼绕流流态对操纵舵面产生很大影响,在大于某一个迎角范围,气动舵面效率会急剧下降,甚至完全丧失。
Lin等[7]提出的减缩频率模型就是针对大幅振荡风洞试验中振荡频率对气动力大小的影响建立的模型。基于α${\dot \alpha } $的三阶多项式模型,保留对气动力影响显著的模型项,有
$\begin{array}{l}{C_{\rm{L}}} = {C_0} + {C_1}\alpha + {C_2}{\alpha ^2} + {C_3}\alpha \left| \alpha \right| + {C_4}{\alpha ^3} + \\{C_5}\dot \alpha + {C_6}\alpha \dot \alpha + {C_7}\left| \alpha \right|\dot \alpha + {C_8}\left| {\dot \alpha } \right|\dot \alpha .\end{array}$ (3)
其中,Ci(i=0, 1, …, 4) 为等效减缩频率keff的三阶多项式模型。在实际应用中keff的数量级较小,为了更好地表征keff对模型系数的影响,Lin等[7]Ci(i=5, 6, 7, 8) 的三阶多项式模型进行了修正,增加了keff的对数函数项,表示为
${C_i} = {a_{i0}}\lg {k_{{\rm{eff}}}} + {a_{i1}}{k_{{\rm{eff}}}} + {a_{i2}}k_{{\rm{eff}}}^2 + {a_{i3}}k_{{\rm{eff}}}^3.$ (4)
其中各项系数ai0ai1ai2ai3是常值。减缩频率模型充分利用大幅振荡风洞试验中发现的非定常气动力受减缩频率影响的特征,具有清晰的模型结构。但是模型是基于飞机做谐波振荡运动的假设条件建立的,将真实的飞行等效成谐波振荡计算等效减缩频率,仅通过在模型中加入减缩频率这一个变量是否足以充分表征飞机的运动历程对气动力的影响仍有待研究[5]
考虑到气动力的非定常特征与流场中发生气流分离和涡破裂现象之间存在密切关系,Goman等[14]提出将气流分离和涡破裂发生的位置作为气动力建模的状态变量。在此基础上研究发展了一系列状态空间建模方法,其中Fan和Lutze[15]的改进结合了气动导数模型,有
${C_{\rm{L}}} = {C_{{\rm{L0}}}} + {C_{{\rm{L, }}\alpha }}\left( x \right)\alpha + {C_{{\rm{L, }}\hat q}}\left( x \right)\hat q + {\Delta ^2}{C_{\rm{L}}}.$ (5)
其中,
${\Delta ^2}{C_{\rm{L}}}\underline{\underline \Delta } \frac{1}{2}\left[{{C_{{\rm{L, }}{\alpha ^2}}}\left( x \right){\alpha ^2} + {C_{{\rm{L, }}{{\hat q}^2}}}\left( x \right){{\hat q}^2} + 2{C_{{\rm{L, }}\alpha {{\hat q}^2}}}\left( x \right)\alpha \hat q} \right].$ (6)
其中,${\hat q} $的定义与式(1) 中相同。各项气动导数全部为x的二次多项式,x由如下状态方程确定:
${\tau _1}\frac{{{\rm{d}}x}}{{{\rm{d}}t}} + x = {x_0}\left( {\alpha-{\tau _2}\dot \alpha } \right).$ (7)
其中:x0(α)是关于α的非线性函数,表示静态情况下气流分离点的位置与迎角之间的关系;τ2表示准定常气动效应下气流分离和再附着之间的时间延迟;τ1为表征瞬态效应下气流分离形成的时间常数。模型具有清晰的物理含义,但待辨识的参数过多,且x0(α)未知,函数结构不易获取,并且需要充分的试验激励数据保证辨识精度,给实际应用带来困难。
上述模型是基于广义的气动导数模型,将气动导数分别看作减缩频率和气动分离点的函数。通过分析大幅振荡风洞试验结果发现,非定常气动力不仅受到减缩频率的影响,而且与振荡的平衡点、振幅有很大关系,可参见文[3]中的试验数据。
3 气动导数模型的非定常修正在非定常气动特性分析的基础上,采用与Wiener模型相似的建模思想,将气动特性分解为动态特性和静态特性,建立了模块化级联模型,对传统的气动导数模型进行了非定常修正,并给出试验数据的处理方法。
3.1 模块化级联模型Wiener模型是基于系统特性分解得到的模块化级联模型,广泛用于非线性系统建模[16-17],建模思想是将系统的动态特征和静态特征分别反映在2个子模块内,由动态模块D(·)和静态模块S(·)串联形成,模型结构如图 1所示[18]
图 1 Wiener模型
图选项





模块化级联模型适用于表征静态特性与动态特性易于分离的系统,且中间变量具有物理意义。将气动系数分解为动态模块和静态模块:动态模块表征由迟滞产生的非定常特性与迎角的时间历程的关系;静态模块为广义的气动导数模型。与Wiener模型不同之处是,线性动态模块不能充分表征迎角变化过程包含的特征参数,需采用非线性动态模块,改进模型的拟合精度。
3.2 动态模块模型中动态模块用于表征迎角的变化历程,通过动态模块将模型输入变量$\boldsymbol{u = }\left[{\alpha, \dot \alpha, \ddot \alpha, \cdots } \right] $转换为中间变量v,要求v能够充分表征非定常气动参数中包含的飞行状态变化历程信息。在大幅振荡试验中发现,气动参数的非定常特性受迎角α、迎角变化的速率${\dot \alpha } $、迎角振荡的频率k、振幅αm及平衡迎角α0影响。正弦振荡是复杂运动的基本组成,设计动态模块时,考虑结合正弦振荡中kαmα0对应的形式构造变量ξ1ξ2ξ3,得到模型的中间变量v=[α, ${\dot \alpha } $, ξ1, ξ2, ξ3]作为静态模块的输入。ξ1ξ2ξ3的引入能够更全面地反映迎角变化的动态历程,并且对于风洞试验数据或飞行试验中飞机做谐波振荡的情况具有明确的物理含义。
在俯仰振荡的风洞试验中,迎角的变化具有如下表达式:
$\alpha = {\alpha _0} + {\alpha _{\rm{m}}}\sin \left( {k\hat t + \varphi } \right).$ (8)
其中:α0αm分别为大幅振荡试验的平衡迎角和振荡幅值;减缩频率$ k = \pi f\bar c{V_\infty }$, ${V_\infty } $为来流速度, f为振荡频率;${\hat t} $为无量纲时间;φ为等效相位。α作为模型的唯一输入,由式(8) 得到迎角的一阶、二阶及三阶导数表达式:
$\left\{ \begin{array}{l}\dot \alpha = k{\alpha _{\rm{m}}}\cos \left( {k\bar t + \varphi } \right), \\\ddot \alpha =-{k^2}{\alpha _{\rm{m}}}\sin \left( {k\bar t + \varphi } \right), \\\dddot \alpha =-{k^3}{\alpha _{\rm{m}}}\cos \left( {k\bar t + \varphi } \right).\end{array} \right.$ (9)
推导出kαmα0α间的动态关系如下:
${k^2} =-\frac{{\dddot \alpha }}{{\dot \alpha }}, k = {\left( {-\frac{{\dddot \alpha }}{{\dot \alpha }}} \right)^{\frac{1}{2}}};$
因为${\left( {\frac{{\dot \alpha }}{k}} \right)^2} + {\left( {\frac{{\ddot \alpha }}{{{k^2}}}} \right)^2} = \alpha _{\text{m}}^2, $
所以$\alpha _{\text{m}}^2 = \frac{{{{\left( {\dot \alpha \ddot \alpha } \right)}^2}}}{{{{\left( {\dddot \alpha } \right)}^2}}}-\frac{{{{\left( {\dot \alpha } \right)}^3}}}{{\dddot \alpha }}, $
${\alpha _{\text{m}}} = {\left( {\frac{{{{\left( {\dot \alpha \ddot \alpha } \right)}^2}}}{{{{\left( {\dddot \alpha } \right)}^2}}}-\frac{{{{\left( {\dot \alpha } \right)}^3}}}{{\dddot \alpha }}} \right)^{\frac{1}{2}}}; $
因为$\alpha {k^2} + \ddot \alpha = {\alpha _0}{k^2}, $
$所以{\alpha _0} = \alpha-\frac{{\dot \alpha \ddot \alpha }}{{\dddot \alpha }}.$ (10)
通过式(10) 所示的解算过程,动态模块表达式如下:
$\left\{ \begin{gathered} {D_1}\left( \boldsymbol{u} \right) = {\xi _1} = {\left| {-\frac{{\dddot \alpha }}{{\dot \alpha }}} \right|^{\frac{1}{2}}}, \hfill \\ {D_2}\left( \boldsymbol{u} \right) = {\xi _2} = {\left| {\frac{{{{\left( {\dot \alpha \ddot \alpha } \right)}^2}}}{{{{\left( {\dddot \alpha } \right)}^2}}}-\frac{{{{\left( {\dot \alpha } \right)}^3}}}{{\dddot \alpha }}} \right|^{\frac{1}{2}}}, \hfill \\ {D_3}\left( \boldsymbol{u} \right) = {\xi _3} = \alpha-\frac{{\dot \alpha \ddot \alpha }}{{\dddot \alpha }}. \hfill \\ \end{gathered} \right.$ (11)
提出的模块化级联模型结构如图 2所示。
图 2 模型结构
图选项





3.3 静态模块静态模块以包含迎角动态变化历程信息的中间变量v作为自变量,构造用于描述定常旋转及非定常气动中迟滞效应的非定常项Ci, un(v),对气动导数模型进行修正,具体表达式为
$\begin{gathered} {C_i}\left( \boldsymbol{v} \right) = {C_{i, {\text{st}}}}\left( \alpha \right) + {C_{i, {\delta _e}}}\left( \alpha \right){\delta _e} + {C_{i, {\text{un}}}}\left( \boldsymbol{v} \right), \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;\;i = L, D, m. \hfill \\ \end{gathered} $ (12)
式(12) 中变量含义与式(1) 相同。Ci, un(v)关于α${\dot \alpha } $的Taylor级数展开保留至三次项,作为模型基本结构,与减缩频率模型类似地有
$\begin{gathered} {C_{i, {\text{un}}}} = {C_1}\alpha + {C_2}\dot \alpha + {C_3}{\alpha ^2} + {C_4}{{\dot \alpha }^2} + \hfill \\ {C_5}\alpha \dot \alpha + {C_6}{\alpha ^3} + {C_7}{{\dot \alpha }^3} + {C_8}\alpha {{\dot \alpha }^2} + {C_9}{\alpha ^2}\dot \alpha, \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;i = L, D, m. \hfill \\ \end{gathered} $ (13)
其中各模型项的系数由v中剩余变量ξ1ξ2ξ3决定。假设各变量对系数的影响是独立的,且为三次多项式形式,由于ξ1的数量级明显小于其他变量,并且风洞数据分析中发现气动力的非定常特性对ξ1变化十分敏感,因此在模型项中加入lgξ1
$\begin{gathered} {C_j} = {a_{j1}}\lg {\xi _1} + {a_{j2}}{\xi _1} + {a_{j3}}\xi _1^2 + {a_{j4}}\xi _1^3 + {a_{j5}}{\xi _2} + \hfill \\ \;\;\;\;\;\;\;{a_{j6}}\xi _2^2 + {a_{j7}}\xi _2^3 + {a_{j8}}{\xi _3} + {a_{j9}}\xi _3^2 + {a_{j10}}\xi _3^3, \hfill \\ \;\;\;\;\;\;\;\;\;\;\;\;j = 1, 2, \cdots, 9. \hfill \\ \end{gathered} $ (14)
采用平方相关系数(squared correlation coefficient,SCC)评价各模型项对气动参数非定常项Ci, un(v)的贡献[19]
${\text{SCC}}\left( {\boldsymbol{Y}, {\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_j}} \right) = \frac{{{{\left\langle {\boldsymbol{Y}, {\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_j}} \right\rangle }^2}}}{{\left\langle {\boldsymbol{Y}, \boldsymbol{Y}} \right\rangle \left\langle {{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_j}, {\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_j}} \right\rangle }} = \frac{{{{\left( {\sum\limits_{i = 1}^N {{y_i}\phi _j^i} } \right)}^2}}}{{\sum\limits_{i = 1}^N {y_i^2} \sum\limits_{i = 1}^N {{{\left( {\phi _j^i} \right)}^2}} }}.$ (15)
其中:Y为各时刻的输出yi (i=1, 2, …, N)构成的向量,N为数据长度,Φj为第j个模型项各时刻的数值φji构成的向量。通过计算各模型项与输出的相关性,选出最大的SCC值对应的模型项,记作l1
${l_1} = \arg \;\;\mathop {\max }\limits_{1 \leqslant j \leqslant {n_m}} \left\{ {{\text{SCC}}\left( {\boldsymbol{Y}, {\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_j}} \right)} \right\}.$ (16)
计算下一步中和剩余各模型项相关性的输出向量。输出向量更新如下:第(m-1) 步输出向量Ym-1中去掉第(m-1) 步选出的第lm-1项的分量,构成第m步的输出向量为
${\boldsymbol{Y}_m} = {\boldsymbol{Y}_{m-1}}-\frac{{\boldsymbol{Y}_{m-1}^T{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_{m - 1}}}}{{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_{m - 1}^T{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_{m - 1}}}}{\mathit{\boldsymbol{ \boldsymbol{\varPhi} }}_{m - 1}}.$ (17)
计算新的输出向量与剩余模型项的相关性,选出SCC值最大的模型项至剩余模型项与剩余输出分量的SCC值小于某一常数为止,之前各步选出的模型项构成最终模型[20]
3.4 数据处理动态模块的输入变量包含迎角的二阶及三阶导数,一般情况下,风洞试验数据及飞行试验数据中仅包含迎角信息,需要对迎角进行数值求导。分析现有的多种数值求导方法,本文采用了五点插值求导法[21]。该方法基于相邻数据点之间为分段三次多项式曲线的假设提出,用插值多项式的微分近似实际曲线的微分。关于三次多项式的假设要求整条曲线是光滑的,因此用于近似实际情况中迎角的变化趋势是合理的。五点插值求导法中每一点的导数由5个相邻点(包括自身)的数值决定,这与本文提出模型构造中间变量v的内在含义——体现迎角变化历程信息的思想是一致的。相邻5个点为一组,第5个点的i阶导数由5个点的(i-1) 阶导数共同决定,有如下关系:
$\begin{gathered} {\alpha ^i}\left( t \right) = \frac{1}{{12\Delta t}}\left[{3{\alpha ^{i-1}}\left( {t-4} \right)-16{\alpha ^{i - 1}}\left( {t - 3} \right) + } \right. \hfill \\ \left. {36{\alpha ^{i - 1}}\left( {t - 2} \right) - 48{\alpha ^{i - 1}}\left( {t - 1} \right) + 25{\alpha ^{i - 1}}\left( t \right)} \right]. \hfill \\ \end{gathered} $ (18)
其中:αi(t)表示t时刻迎角的i阶导数, i=1, 2, 3, t=5, 6, …。首先由迎角的测量值α0(t)计算各时刻迎角的一阶导数,再由一阶导数计算二阶导数,最后计算得到三阶导数,反映在最终模型中气动参数为关于α(t), α(t-1), α(t-2), …, α(t-12) 的函数,充分体现非定常气动特性与飞机运动历程之间的关系,同时也降低了测量噪声对中间变量v的影响。
动态模块式(11) 形式简洁,分母仅包含单个模型项,降低了模型对输入信号的限制。但需要注意的是,通过式(18) 完成全部数值求导后,不可避免会出现αi(t)=0(i=1, 3) 的情形,导致分母等于零。因此,在数据处理过程中须将这些点去除,从而避免在动态模块(式(11))运算中发生奇异,导致无法正确辨识模型。
静态项Ci, st(α)通过静态风洞试验获得,非定常项关于待估计参数是线性的,确定好模型项后采用最小二乘法即可完成参数估计。
4 试验验证本文采用提出的模块化级联模型和相应的数据处理方法辨识仿F-22的风洞试验数据,验证提出方法的合理性和可行性。首先由静态风洞试验获得静态模块中Ci, st(α)的插值表,分析数据发现舵面偏转的效应与气动力的非定常特性相比影响很小,因此在大迎角区域可以忽略此项。选取9组不同试验条件的大幅振荡数据辨识模型中的剩余参数,9组试验数据相关参数见表 1
表 1 用于模型辨识的试验数据
试验组 f/Hz αm/(°) α0/(°)
1 0.4 20 30
2 0.8 20 40
3 1.2 20 60
4 0.2 45 45
5 0.4 45 45
6 0.8 45 45
7 0.2 40 40
8 0.6 40 40
9 0.8 40 40


表选项






计算静态模块剩余各模型项的SCC,选出每一步中最大SCC值的模型项,直至剩余模型项最大SCC值小于5%,从而确定模型结构,结果如表 2所示。
表 2 模型结构确定
模型项 SCC
lg(ξ1)α 0.871 7
lg(ξ1)$\dot \alpha $ 0.200 7
ξ1$\dot \alpha $2 0.251 3
ξ23α3 0.357 3
ξ1α 0.213 1
ξ33α3 0.107 1
ξ12α 0.058 7
ξ13$ \dot \alpha $2 0.053 8
lg(ξ1)α3 0.017 0
ξ3 0.057 8
ξ32α3 0.041 4
ξ1α2 0.038 0
ξ3α3 0.026 6
ξ2α 0.020 1
ξ22α3 0.016 1
lg(ξ1)α$\dot \alpha $ 0.008 5
ξ23$\dot \alpha $ 0.008 8
ξ13α$\dot \alpha $2 0.008 3
ξ32 0.022 3
ξ33α2 0.012 2
ξ12α2 0.012 6
ξ12$ \dot \alpha $2 0.011 0
lg(ξ1)α$\dot \alpha $2 0.010 9 0.010 9
ξ2α3 0.007 5
lg(ξ1)$\dot \alpha $3 0.006 8
ξ22 0.005 5
ξ12α$\dot \alpha $2 0.007 0
ξ22$\dot \alpha $ 0.005 2
ξ2α$\dot \alpha $ 0.006 1
ξ13α 0.004 9


表选项






用相同的数据(见表 1)辨识减缩频率模型,选取与建模数据不同的表 3所示试验条件的数据验证模型,2种模型的对比结果如图 34所示。
表 3 模型测试数据
试验组 f/Hz αm/(°) α0/(°)
1 0.8 20 50
2 0.5 40 40


表选项






图 3 表 3第1组数据对比结果
图选项





图 4 表 3第2组数据对比结果
图选项





可以看到,提出的模型的预测能力比减缩频率模型显著提高,图 4中相对误差在5%以内,图 3中辨识精度较差,原因是用于模型辨识的试验数据(见表 1)中αm只有3个激励值(20°、40°和45°),即式(11) 中的第2个函数始终为某个常数,导致提出模型中ξ2无法充分激励。这在真实的飞行数据中是不会出现的,因为迎角的变化是随机的,与其三阶以内的导数不会存在固定的相关性。为说明第1组测试精度受到训练数据的影响,采用表 1中第1、2、3组数据辨识模型,消除ξ2不充分激励导致的误差,用辨识得到的模型预测表 3中第1组数据,相对误差可控制在2%以内,如图 5所示,说明上述分析合理。
图 5 模型与试验数据对比结果
图选项





5 结论本文分析了大迎角机动过程气动力的非定常特性,设计了模块化级联模型,将非定常气动参数分解为动态特性和静态特性两部分,构造中间变量ξ1ξ2ξ3,具有清晰的模型结构。通过SCC值对模型项进行评价,保留对模型贡献大的模型项,保证模型的简洁性和泛化性(即预测能力)。此外,模型在工程应用中不受机动方式的限制,易于辨识,比其他复杂的数学模型或人工智能模型的局限性小,便于控制律的设计。试验结果表明:当采用本文提出的模块化级联模型辨识气动参数时,相对误差小于5%,辨识结果明显优于传统的减缩频率模型。本文提出的辨识方法显著提高了非定常气动参数的辨识精度。

参考文献
[1] Biancolini M E, Cella U, Groth C, et al. Static aeroelastic analysis of an aircraft wind-tunnel model by means of modal RBF mesh updating[J]. Journal of Aerospace Engineering, 2016, 29(6): 04016061. DOI:10.1061/(ASCE)AS.1943-5525.0000627
[2] Fabrizio N, Salvatore C, Pierluigi D V. Commuter aircraft aerodynamic characteristics through wind tunnel tests[J]. Aircraft Engineering and Aerospace Technology, 2016, 88(4): 523–534. DOI:10.1108/AEAT-01-2015-0008
[3] 刘春明, 赵志军, 卜忱, 等. 低速风洞双自由度大幅振荡试验技术[J]. 航空学报, 2016, 37(8): 2417–2425.LIU Chunming, ZHAO Zhijun, BU Chen, et al. Double degree-of-freedom large amplitude oscillation test technology in low speed wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8): 2417–2425. (in Chinese)
[4] Popov A V, Grigorie L T, Botez R M, et al. Real time morphing wing optimization validation using wind-tunnel tests[J]. Journal of Aircraft, 2010, 47(4): 1346–1355. DOI:10.2514/1.47431
[5] Greenwell D I. A review of unsteady aerodynamic modelling for flight dynamics of manoeuvrable aircraft [C]//Atmospheric Flight Mechanics Conference. Providence, RI, USA: American Institute of Aeronautics and Astronautics Inc., 2004: 1231-1255.
[6] Chin S, Lan C E. Fourier functional analysis for unsteady aerodynamic modeling[J]. AIAA Journal, 1992, 30(9): 2259–2266. DOI:10.2514/3.11213
[7] LIN Guofeng, Lan C E, Brandon J M. A generalized dynamic aerodynamic coefficient model for flight dynamics applications [C]//Atmospheric Flight Mechanics Conference. New Orleans, LA, USA: American Institute of Aeronautics and Astronautics Inc., 1997: 377-391.
[8] Ghoreyshi M, Cummings R M, Da R A, et al. Transonic aerodynamic load modeling of X-31 aircraft pitching motions[J]. AIAA Journal, 2013, 51(10): 2447–2464. DOI:10.2514/1.J052309
[9] Jenkins J E. Simplification of nonlinear indicial response models: Assessment for the two-dimensional airfoil case[J]. Journal of Aircraft, 1991, 28(2): 131–138. DOI:10.2514/3.46001
[10] Meyer M, Matthies H G. State-space representation of instationary two-dimensional airfoil aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(3): 263–274.
[11] Gordon B W, Pakmehr M, Rabbath C A. State-space modeling and identification of delta wing vortex-coupled roll dynamics[J]. Journal of Aircraft, 2009, 46(1): 36–45. DOI:10.2514/1.23596
[12] Lieu T, Farhat C, Lesoinne M. Reduced-order fluid/structure modeling of a complete aircraft configuration[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(41): 5730–5742.
[13] Beard R W, Mclain T W. Small Unmanned Aircraft: Theory and Practice[M]. Princeton, NJ, USA: Princeton University Press, 2012.
[14] Goman M, Khrabrov A. State-space representation of aerodynamic characteristics of an aircraft at high angles of attack[J]. Journal of Aircraft, 1994, 31(5): 1109–1115. DOI:10.2514/3.46618
[15] FAN Yigang, Lutze F H. Identification of an unsteady aerodynamic model at high angles of attack [C]//Atmospheric Flight Mechanics Conference. San Diego, CA, USA: American Institute of Aeronautics and Astronautics Inc., 1996: 375-383.
[16] Voros J. Modeling and identification of Wiener systems with two-segment nonlinearities[J]. IEEE Transactions on Control Systems Technology, 2003, 11(2): 253–257. DOI:10.1109/TCST.2003.809238
[17] CHEN Zhen, LI Shuo, Pan E. Optimal constant-stress accelerated degradation test plans using nonlinear generalized wiener process[J]. Mathematical Problems in Engineering, 2016, 2016: 9283295-1–9283295-11.
[18] 陈翰馥, 赵文虓. 几类典型随机非线性系统的辨识[J]. 系统科学与数学, 2011, 31(9): 1019–1044.CHEN Hanfu, ZHAO Wenxiao. Identification of several classes of stochastic nonlinear systems[J]. Journal of Systems Science and Mathematical Sciences, 2011, 31(9): 1019–1044. (in Chinese)
[19] ZHANG Wanxin, ZHU Jihong. Modification of recursive least squares algorithm for linear time-varying systems [C]//Proceedings of the 35th Chinese Control Conference. Chengdu, China: IEEE, 2016: 2151-2153.
[20] WEI Hualiang, Billings S A. Model structure selection using an integrated forward orthogonal search algorithm assisted by squared correlation and mutual information[J]. International Journal of Modelling, Identification and Control, 2008, 3(4): 341–356. DOI:10.1504/IJMIC.2008.020543
[21] 张平文, 李铁军. 数值分析[M]. 北京: 北京大学出版社, 2007.ZHANG Pingwen, LI Tiejun. Numerical Analysis[M]. Beijing: Peking University Press, 2007. (in Chinese)

相关话题/数据 结构

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 分布式环境下业务模型的数据存储及访问框架
    蔡鸿明,姜祖海,姜丽红上海交通大学软件学院,上海200240收稿日期:2016-10-28基金项目:国家自然科学基金面上项目(61373030,71171132)作者简介:蔡鸿明(1975-),男,教授。E-mail:hmcai@sjtu.edu.cn摘要:构造业务模型以支持应用系统开发是基于模型驱 ...
    本站小编 Free考研考试 2020-04-15
  • 适用于海量数据应用的多维Hash表结构
    吴泉源,彭灿,郑毅,卜俊丽国防科技大学计算机学院,长沙410073收稿日期:2016-06-28作者简介:吴泉源(1942-),男,教授。E-mail:wuquanyuan@126.com摘要:传统的Hash表通过对目标数据进行Hash计算,可以实现数据的快速存取与检索。为了保持较好的存储性能,需要 ...
    本站小编 Free考研考试 2020-04-15
  • 基于大数据的社会治理数据集成及决策分析方法
    洪之旭1,陈浩2,程亮31.泰华智慧产业集团股份有限公司,济南250101;2.济南市市中区发展和改革委员会,济南250001;3.九三学社济南市委员会,济南250012收稿日期:2016-06-30作者简介:洪之旭(1977-),男,高级工程师。E-mail:hongzhixu@126.com摘要 ...
    本站小编 Free考研考试 2020-04-15
  • 基于层次化结构的语言模型单元集优化
    米吉提·阿不里米提1,2,艾克白尔·帕塔尔2,艾斯卡尔·艾木都拉1,21.新疆大学科学与技术学院,乌鲁木齐830046;2.新疆大学信息科学与工程学院,乌鲁木齐830046收稿日期:2016-06-22基金项目:国家自然科学基金资助项目(61462085,61662078,61163032);教育部 ...
    本站小编 Free考研考试 2020-04-15
  • 回转对称微结构光学模具的超精密切削B轴旋转加工工艺
    高兴,李勇,钟昊,岳全,李朝将清华大学机械工程系,精密超精密制造装备及控制北京市重点实验室,摩擦学国家重点实验室,北京100084收稿日期:2016-06-07基金项目:北京市自然科学基金资助项目(3131003)作者简介:高兴(1987-),男,博士研究生通信作者:李勇,研究员,E-mail:li ...
    本站小编 Free考研考试 2020-04-15
  • THUYG-20:免费的维吾尔语语音数据库
    艾斯卡尔·肉孜1,殷实1,张之勇1,王东1,艾斯卡尔·艾木都拉2,郑方11.清华大学计算机科学与技术系,清华信息科学技术国家实验室,信息技术研究院,北京100084;2.新疆大学信息科学与工程学院,乌鲁木齐830046收稿日期:2016-06-24基金项目:国家自然科学基金项目(61271389,6 ...
    本站小编 Free考研考试 2020-04-15
  • 低能耗的无线传感器网络隐私数据融合方法
    苘大鹏1,王臣业2,杨武1,王巍1,玄世昌1,靳小鹏11.哈尔滨工程大学信息安全研究中心,哈尔滨150001;2.哈尔滨工程大学国家大学科技园,哈尔滨150001收稿日期:2016-06-29基金项目:国家自然科学基金资助项目(61272537,61472098);中央高校基本科研业务费专项资金资助 ...
    本站小编 Free考研考试 2020-04-15
  • 基于海量车牌识别数据的相似轨迹查询方法
    赵卓峰,卢帅,韩燕波北方工业大学大规模流数据集成与分析技术北京市重点实验室,北京100144收稿日期:2016-06-28基金项目:国家自然科学基金重点项目(61033006);北京市自然科学基金项目(4162021)作者简介:赵卓峰(1977-),男,副研究员。E-mail:edzhao@ncut ...
    本站小编 Free考研考试 2020-04-15
  • 基于显微CT技术的结焦砂3维孔隙结构精细表征
    史琳1,许然1,许强辉1,须颖2,郑立才21.清华大学热科学与动力工程教育部重点实验室,北京100084;2.三英精密仪器有限公司,天津300000收稿日期:2016-03-11基金项目:国家创新团队支持项目(51321002)作者简介:史琳(1964-),女,教授。E-mail:rnxsl@mai ...
    本站小编 Free考研考试 2020-04-15
  • Suomi-NPP夜间灯光数据与GDP的空间关系分析
    郭永德1,高金环2,马洪兵11.清华大学电子工程系,北京100084;2.北京大学政府管理学院,北京100871收稿日期:2015-10-27基金项目:清华大学自主科研计划资助项目(20131089381)作者简介:郭永德(1988-),男,博士研究生通信作者:马洪兵,副研究员,E-mail:hbm ...
    本站小编 Free考研考试 2020-04-15