删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

两种严格界面向目标误差估计方法的等价性

本站小编 Free考研考试/2020-04-15

郭孟武 , 钟宏志
清华大学 土木工程系, 北京 100084

收稿日期:2015-12-03
基金项目:国家自然科学基金资助项目(51378294)
作者简介:郭孟武 (1991—), 男, 博士研究生
通信作者:钟宏志, 教授, E-mail:hzz@tsinghua.edu.cn

摘要:在模型检验研究中,针对离散误差的后验误差估计扮演着重要角色。在工程有限元分析中,有关问题解答场的标量性质的目标输出量是后验误差分析中人们所关注的。在已有的面向目标误差估计技术中,有2种方法能够提供目标量误差的严格上下界,即本构关系误差法与凸目标函数优化法。该文简要总结了这2种方法,并从计算列式的一致性和基本原理的等价性2个层面论证了2种方法的等价性,给出了2种严格界方法的本质均为余能原理的论断。对2种方法等价性的探讨有助于结合2种表达格式的优势,并拓展到更复杂的问题中,形成简明有效的计算列式。
关键词:微分方程的数值解法后验误差估计面向目标误差估计本构关系误差凸目标函数约束优化严格界余能原理
Equivalence of two strictly bounding approaches for goal-oriented error estimation
GUO Mengwu, ZHONG Hongzhi
Department of Civil Engineering, Tsinghua University, Beijing 100084, China


Abstract: For model verification which is mainly focused on the control of discretization errors of numerical results, a posteriori error estimation plays an important role in various numerical tools such as the finite element method. The outputs of interest are usually converted into integral functionals over the problem domain for a posteriori error analysis. Among the available techniques for goal-oriented error estimation, only two approaches, the constitutive relation error estimation and the constrained optimization method with convex objective functions, have been claimed to be able to offer guaranteed strict upper and lower bounds for the errors in quantities of interest. The two approaches are briefly reviewed and the equivalence of their formulation and principle is given. Both approaches are shown to be essentially based on the complementary energy theorem. The equivalence of the two approaches is instrumental in simplification of error estimation and extension of applications into more complex problems.
Key words: numerical methods for partial differential equations (PDEs)a posteriori error estimationgoal-oriented error estimationconstitutive relation errorconstrained optimization with convex objective functionsstrict boundscomplementary energy theorem
有限元法作为一种十分有效的数值方法,在工程设计与计算分析中得以广泛应用。为了控制误差以保证计算模拟的质量,模型检验 (model verification) 作为数值方法中的重要步骤已经得到广泛研究。而在各种计算误差的来源中,离散误差具有主导地位。为了评价有限元的离散误差,一系列后验误差 (a posteriori error) 估计[1-3]技术得以发展,例如:显式型 (残值型) 误差估计方法[4]、隐式型误差估计方法[5-6]、恢复型误差估计方法[7]、阶谱误差估计方法[8]、本构关系误差 (constitutive relation error) 方法[9]等;这些方法均可对有限元分析带来的整体离散误差进行评估。
然而在实际的有限元分析中,人们关注的往往是一些有关问题解的目标量,例如平均位移、局部应力等。因此,在后验误差分析时,对目标量的离散误差评价是非常必要的,这种针对目标输出量进行的误差估计称为面向目标误差估计 (goal-oriented error estimation)。面向目标误差估计基于伴随方法[10-11],自20世纪90年代中期开始发展[12-13]以来,各种估计技术相继被提出,主要包括伴随加权残值法[10, 14-15]、能量模估计方法[16]、Green函数分解法[17]、本构关系误差法、凸目标函数优化 (constrained optimization with convex objective functions) 法等。与此同时,面向目标误差估计也在Poisson方程、固体力学问题、特征值问题、时变问题、流体力学问题等诸多问题的数值求解中得到了应用[15, 18]
在已有的面向目标误差估计技术中,有2种方法可以提供目标量误差的严格上下界,分别为Ladevèze教授提出的本构关系误差方法[19-24]及Patera等提出的凸目标函数约束优化法[25-27]。这2种方法为目标量提供可计算的严格误差界,这种严格界性质及在各种问题中的适用性使得这2种方法在各种面向目标误差估计技术中表现突出。
本文旨在理论上论证这2种方法的等价性。在对2种方法的基本思路进行综述的基础上,从计算列式上说明了2种方法的一致性,并进一步揭示二者的基本原理均为线弹性系统的余能最小值原理,故具有原理上的等价性。
1 模型问题考虑定义在域Ω?${{\mathbb{R}}^{3}}$上的线弹性体,其Dirichlet边界为?1Ω,Neumann边界为?2Ω=?Ω\?1Ω。该结构上作用有体力fp∈[L2(Ω)]3,另在?1Ω上给定位移up,在?2Ω上给定面力Tp∈[L2(?2Ω)]3
在本文中,采用如下集合记号:
$\left\{ \begin{array}{l}U = \left\{ {\mathit{\boldsymbol{u}} \in {{\left[ {{H^1}\left( \mathit{\Omega } \right)} \right]}^3}:\mathit{\boldsymbol{u}}\left| {_{{\partial _1}\mathit{\Omega }}} \right. = {\mathit{\boldsymbol{u}}_p}} \right\},\\V = \left\{ {\mathit{\boldsymbol{v}} \in {{\left[ {{H^1}\left( \mathit{\Omega } \right)} \right]}^3}:\mathit{\boldsymbol{v}}\left| {_{{\partial _1}\mathit{\Omega }}} \right. = {\bf{0}}} \right\},\\S = \left\{ {\mathit{\boldsymbol{\sigma }} \in {{\left[ {{L_2}\left( \mathit{\Omega } \right)} \right]}^{3 \times 3}}:\mathit{\boldsymbol{\sigma = }}{\mathit{\boldsymbol{\sigma }}^{\rm{T}}}} \right\}.\end{array} \right.$ (1)
并定义退化能量内积au(·, ·):[H1(Ω)]3×[H1(Ω)]3$\mathbb{R}$及相应的半模‖·‖u,能量内积aσ(·, ·):S×S$\mathbb{R}$及相应的模‖·‖σ以及有界线性泛函l(·):[H1(Ω)]3$\mathbb{R}$如下:
$\left\{ \begin{array}{l}\begin{array}{*{20}{c}}{{a_u}\left( {\mathit{\boldsymbol{u}},\mathit{\boldsymbol{v}}} \right) = \int_\mathit{\Omega } {\mathit{\boldsymbol{\varepsilon }}\left( \mathit{\boldsymbol{u}} \right):\mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( \mathit{\boldsymbol{v}} \right)} {\rm{d}}\mathit{\Omega },}\\{{{\left\| \mathit{\boldsymbol{u}} \right\|}_u} = \sqrt {{a_u}\left( {\mathit{\boldsymbol{u}},\mathit{\boldsymbol{u}}} \right)} ,}\end{array}\\{a_\sigma }\left( {\mathit{\boldsymbol{\sigma }},\mathit{\boldsymbol{\tau }}} \right) = \int_\mathit{\Omega } {\mathit{\boldsymbol{\sigma }}:{\mathit{\boldsymbol{H}}^{ - 1}}:\mathit{\boldsymbol{\tau }}} {\rm{d}}\mathit{\Omega ,}\\\begin{array}{*{20}{c}}{{{\left\| \mathit{\boldsymbol{\sigma }} \right\|}_\sigma } = \sqrt {{a_\sigma }\left( {\mathit{\boldsymbol{\sigma }},\mathit{\boldsymbol{\sigma }}} \right)} ,}\\{l\left( \mathit{\boldsymbol{v}} \right) = \int_\mathit{\Omega } {{f_p} \cdot \mathit{\boldsymbol{v}}{\rm{d}}\mathit{\Omega }} + \int_{{\partial _2}\mathit{\Omega }} {{\mathit{\boldsymbol{T}}_p} \cdot \mathit{\boldsymbol{v}}{\rm{d}}\partial \mathit{\Omega }} .}\end{array}\end{array} \right.$ (2)
其中:H为材料的Hooke张量;ε(u) 表示Cauchy应变张量,ε(u)=(▽u+u▽)/2。
那么,该模型问题 (原问题) 可如下表述:求解定义在Ω上的位移场u和应力场σ,使得满足以下3组方程。
协调条件:
$\mathit{\boldsymbol{u}} \in U;$ (3)
平衡条件:
$\mathit{\boldsymbol{\sigma }} \in S,\;\;\;\;{a_\sigma }\left( {\mathit{\boldsymbol{\sigma }},\mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( \mathit{\boldsymbol{v}} \right)} \right) = l\left( \mathit{\boldsymbol{v}} \right),\;\;\;\;\forall \mathit{\boldsymbol{v}} \in V;$ (4)
本构方程:
$\mathit{\boldsymbol{\sigma }} = \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( \mathit{\boldsymbol{u}} \right).$ (5)
进一步地,综合式 (3)—(5),该边值问题的弱形式描述为求解uU使得
${a_u} = \left( {\mathit{\boldsymbol{u}},\mathit{\boldsymbol{v}}} \right) = l\left( \mathit{\boldsymbol{v}} \right),\;\;\;\forall \mathit{\boldsymbol{v}} \in V.$ (6)
若采用Galerkin有限元对该问题进行离散,并采用插值空间Ph,则该问题的有限元格式为求解uhUh使得
${a_u} = \left( {{\mathit{\boldsymbol{u}}_h},\mathit{\boldsymbol{v}}} \right) = l\left( v \right),\;\;\;\forall \mathit{\boldsymbol{v}} \in {V_h}.$ (7)
其中:Uh=UPhVh=VPh。而相应的有限元应力解由本构关系式 (5) 得到,即σh=H: ε(uh)。
基于该模型问题进行面向目标分析,不失一般性地,将目标量I定义为关于位移场u的有界线性泛函lO:[H1(Ω)]3$\mathbb{R}$,即
$I = {l^O}\left( \mathit{\boldsymbol{u}} \right).$ (8)
而其计算值Ih=lO(uh) 的误差 (IIh) 是本文关注的重点。下述2种方法均可给出 (IIh) 的严格上下界,以作为面向该目标量的离散误差估计。
2 本构关系误差方法本构关系误差建立在容许场的概念上,通过本构关系定义线弹性问题的误差;通过有限元解选定容许场后,本构关系误差可为位移误差场的能量模提供严格上界;基于此原理,在面向目标误差估计中,由本构关系误差可得到目标量误差的严格上下界。
2.1 本构关系误差的概念本构关系误差的概念基于模型问题的容许场$\left( {\mathit{\boldsymbol{\tilde u}},\mathit{\boldsymbol{\tilde \sigma }}} \right)$,其中$\mathit{\boldsymbol{\tilde u}}$为满足协调条件式 (3) 的位移场,称为协调位移场,${\mathit{\boldsymbol{\tilde \sigma }}}$为满足平衡方程式 (4) 的应力场,称为平衡应力场。而本构关系误差则通过本构关系式 (5) 进行度量:
${e_{{\rm{CRE}}}}\left( {\mathit{\boldsymbol{\tilde u}},\mathit{\boldsymbol{\tilde \sigma }}} \right) = {\left\| {\mathit{\boldsymbol{\tilde \sigma }} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {\mathit{\boldsymbol{\tilde u}}} \right)} \right\|_\sigma }.$ (9)
可以证明本构关系误差具有如下性质:
${e_{{\rm{CRE}}}}\left( {\mathit{\boldsymbol{\tilde u}},\mathit{\boldsymbol{\tilde \sigma }}} \right) = 0 \Leftrightarrow \left( {\mathit{\boldsymbol{\tilde u}},\mathit{\boldsymbol{\tilde \sigma }}} \right) = \left( {\mathit{\boldsymbol{u}},\mathit{\boldsymbol{\sigma }}} \right)\;\;\;\;{\rm{a}}{\rm{.e}}{\rm{.,}}$ (10a)
$e_{{\rm{CRE}}}^2\left( {\mathit{\boldsymbol{\tilde u}},\mathit{\boldsymbol{\tilde \sigma }}} \right) = \left\| {\mathit{\boldsymbol{u}} - \mathit{\boldsymbol{\tilde u}}} \right\|_u^2 + \left\| {\mathit{\boldsymbol{\sigma }} - \mathit{\boldsymbol{\tilde \sigma }}} \right\|_\sigma ^2,$ (10b)
$\begin{array}{l}{e_{{\rm{CRE}}}}\left( {\mathit{\boldsymbol{\tilde u}},\mathit{\boldsymbol{\tilde \sigma }}} \right) = 2{\left\| {\mathit{\boldsymbol{\sigma }} - {{\mathit{\boldsymbol{\tilde \sigma }}}^ * }} \right\|_\sigma },\\\;\;\;\;\;\;\;\;{{\mathit{\boldsymbol{\tilde \sigma }}}^ * }: = \left( {\mathit{\boldsymbol{\tilde \sigma }} + \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {\mathit{\boldsymbol{\tilde u}}} \right)} \right)/2.\end{array}$ (10c)
在有限元分析中,由于uhUh?U,往往取${\mathit{\boldsymbol{\tilde \mu }}}$=uh;然而,由于σh不满足平衡方程式 (4),故平衡应力场$\mathit{\boldsymbol{\tilde \sigma }} = {{\mathit{\boldsymbol{\tilde \sigma }}}_h}$需要额外构造。该应力场${{\mathit{\boldsymbol{\tilde \sigma }}}_h}$可基于有限元应力解σh通过一种称为延长条件的能量关系[1, 28]进行构造,即
$a_\sigma ^E\left( {{{\mathit{\boldsymbol{\tilde \sigma }}}_h} - {\mathit{\boldsymbol{\sigma }}_h},\mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( \mathit{\boldsymbol{v}} \right)} \right) = 0,\;\;\;\forall \mathit{\boldsymbol{v}} \in {\left[ {{H^1}\left( E \right)} \right]^3} \cap {P_h}.$ (11)
其中:E为有限元分析时划分出的每一个单元,而aσE表示aσ在单元E上的限制。
由式 (10b) 易见位移误差场e:=uuh能量模的严格上界,即
${\left\| \mathit{\boldsymbol{e}} \right\|_u} \le {e_{{\rm{CRE}}}}\left( {{\mathit{\boldsymbol{u}}_h},{{\mathit{\boldsymbol{\tilde \sigma }}}_h}} \right).$ (12)
2.2 针对目标量的伴随问题如式 (8) 所示,模型问题解的标量目标量I作为[H1(Ω)]3上的有界线性泛函,常具有如下的形式:
${l^O}\left( \mathit{\boldsymbol{u}} \right) = \int_\mathit{\Omega } {{f_d} \cdot \mathit{\boldsymbol{u}}{\rm{d}}\mathit{\Omega }} + \int_{{\partial _2}\mathit{\Omega }} {{\mathit{\boldsymbol{T}}_d} \cdot \mathit{\boldsymbol{u}}{\rm{d}}\partial \mathit{\Omega }} .$ (13)
其中:fd∈[L2(Ω)]3Td∈[L2(?2Ω)]3为提取因子。
针对该目标量引入伴随问题:求解定义在Ω上的位移场w和应力场τ,使其满足
协调条件:
$\mathit{\boldsymbol{w}} \in V;$ (14)
平衡条件:
$\mathit{\boldsymbol{\tau }} \in S,\;\;\;{a_\sigma }\left( {\mathit{\boldsymbol{\tau }},\mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( \mathit{\boldsymbol{v}} \right)} \right) = {l^O}\left( \mathit{\boldsymbol{v}} \right)\;\;\;\forall \mathit{\boldsymbol{v}} \in V;$ (15)
本构方程:
$\mathit{\boldsymbol{\tau }} = \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( \mathit{\boldsymbol{w}} \right).$ (16)
该边值问题的弱形式描述为求解wV使得:
${a_u}\left( {\mathit{\boldsymbol{w}},\mathit{\boldsymbol{v}}} \right) = {l^O}\left( \mathit{\boldsymbol{v}} \right)\;\;\;\;\forall \mathit{\boldsymbol{v}} \in V.$ (17)
该问题的有限元格式为求解whVh使得:
${a_u}\left( {{\mathit{\boldsymbol{w}}_h},\mathit{\boldsymbol{v}}} \right) = {l^O}\left( \mathit{\boldsymbol{v}} \right)\;\;\;\;\forall \mathit{\boldsymbol{v}} \in {V_h}.$ (18)
与模型问题 (原问题) 类似,进一步可得有限元应力解τh,并通过延长条件构造平衡应力场${{\mathit{\boldsymbol{\tilde \tau }}}_h}$
2.3 目标量误差的表示与估计由式 (17),考虑到eV,并结合Galerkin正交性,即对?vVha(e, v)=0,可得目标量误差IIh=lO(e) 的表达式为
$I - {I_h} = {a_u }\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{\varepsilon }}} \right).$ (19)
其中, ε:=wwh为伴随问题的位移误差场, 由式 (12) 并借助Cauchy不等式,该误差的严格上下界可由下式给出:
$\left| {I - {I_h}} \right| \le {e_{{\rm{CRE}}}}\left( {{\mathit{\boldsymbol{u}}_h},{{\mathit{\boldsymbol{\tilde \sigma }}}_h}} \right) \cdot {e_{{\rm{CRE}}}}\left( {{\mathit{\boldsymbol{w}}_h},{{\mathit{\boldsymbol{\tilde \tau }}}_h}} \right).$ (20)
除此之外,借由本构关系误差的性质式 (10c) 可进一步推证:
$\begin{array}{*{20}{c}}{\left| {I - {I_h} - \frac{1}{2}{a_\sigma }\left( {{{\mathit{\boldsymbol{\tilde \sigma }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{u}}_h}} \right),{{\mathit{\boldsymbol{\tilde \tau }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{w}}_h}} \right)} \right)} \right| \le }\\{\frac{1}{2}{e_{{\rm{CRE}}}}\left( {{\mathit{\boldsymbol{u}}_h},{{\mathit{\boldsymbol{\tilde \sigma }}}_h}} \right) \cdot {e_{{\rm{CRE}}}}\left( {{\mathit{\boldsymbol{w}}_h},{{\mathit{\boldsymbol{\tilde \tau }}}_h}} \right).}\end{array}$ (21)
则目标量I的误差的严格、可计算上下界可表示为
$\left\{ \begin{array}{l}\begin{array}{*{20}{c}}{{I^{{\rm{upper}}}} - {I_h} = \frac{1}{2}{a_\sigma }\left( {{{\mathit{\boldsymbol{\tilde \sigma }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{u}}_h}} \right),{{\mathit{\boldsymbol{\tilde \tau }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{w}}_h}} \right)} \right) + }\\{\frac{1}{2}{e_{{\rm{CRE}}}}\left( {{\mathit{\boldsymbol{u}}_h},{{\mathit{\boldsymbol{\tilde \sigma }}}_h}} \right) \cdot {e_{{\rm{CRE}}}}\left( {{\mathit{\boldsymbol{w}}_h},{{\mathit{\boldsymbol{\tilde \tau }}}_h}} \right) \cdot }\end{array}\\\begin{array}{*{20}{c}}{{I^{{\rm{lower}}}} - {I_h} = \frac{1}{2}{a_\sigma }\left( {{{\mathit{\boldsymbol{\tilde \sigma }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{u}}_h}} \right),{{\mathit{\boldsymbol{\tilde \tau }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{w}}_h}} \right)} \right) - }\\{\frac{1}{2}{e_{{\rm{CRE}}}}\left( {{\mathit{\boldsymbol{u}}_h},{{\mathit{\boldsymbol{\tilde \sigma }}}_h}} \right) \cdot {e_{{\rm{CRE}}}}\left( {{\mathit{\boldsymbol{w}}_h},{{\mathit{\boldsymbol{\tilde \tau }}}_h}} \right) \cdot }\end{array}\end{array} \right.$ (22)
3 凸目标函数约束优化方法凸目标函数约束优化方法将所求误差 (IIh) 表示为凸目标函数,并转化为约束优化问题;再通过Lagrange形式将其转化为无约束优化问题,由此得到误差的严格界。
3.1 Lagrange形式与目标量误差上下界由式 (6) 和 (7),模型问题精确解u的未知使得目标量的误差IIh=lO(uuh) 可表示为以下约束优化形式:
$\begin{array}{*{20}{c}}{I - {I_h} = \mathop {\min }\limits_{e \in V} \left[ {{l^O}\left( \mathit{\boldsymbol{e}} \right) + \kappa \left( {{a_u}\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{e}}} \right) - R\left( \mathit{\boldsymbol{e}} \right)} \right)} \right],}\\{{\rm{s}}{\rm{.t}}{\rm{.}}\;\;\;\;{a_u}\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}}} \right) = R\left( \mathit{\boldsymbol{w}} \right)\;\;\;\;\;\forall \mathit{\boldsymbol{w}} \in V.}\end{array}$ (23)
其中: κ${{\mathbb{R}}^{+}}$; R(·):=l(·)-au(uh, ·) 为定义在[H1(Ω)]3上的有界线性泛函,称为残值泛函。且值得注意的是,目标函数lO(e)+κ(au(e, e)-l(e)) 具有凸性。
当采用插值空间Ph进行有限元分析时,将单元划分的具体形式记作Γh,而将所有内部的单元交界及单元与边界的交界组成的集合记作Ξ(Γh),则函数空间V亦可表示为
$\begin{array}{*{20}{c}}{V = \left\{ {\mathit{\boldsymbol{v}} \in \hat V:0 = b\left( {\mathit{\boldsymbol{v}},\mathit{\boldsymbol{q}}} \right): = } \right.}\\{\left. {\sum\limits_{{\gamma _h} \in \Xi \left( {{\mathit{\Gamma }_h}} \right)} {\int_{{\gamma _h}} {{{\left[ \mathit{\boldsymbol{v}} \right]}_{{\gamma _h}}} \cdot \mathit{\boldsymbol{q}}\left| {_{{\gamma _h}}{\rm{d}}s} \right.\;\;\;\forall \mathit{\boldsymbol{q}} \in Q} } } \right\}.}\end{array}$ (24)
其中:${\hat V}$为破坏VΞ(Γh) 上所有连续性 (包括Dirichlet边界条件) 形成的函数空间;[v]γhγh为内部交界时为v的跳跃,而当γh在边界上时为v的迹;Q的定义为Q={qL2(Ξ(Γh)):q|?2Ω=0}。
因此,(IIh) 可进一步地表示为如下的约束优化问题:
$\begin{array}{l}I - {I_h} = \mathop {\min }\limits_{e \in T} \left[ {{l^O}\left( \mathit{\boldsymbol{e}} \right) + \kappa \left( {{a_u}\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{e}}} \right) - R\left( \mathit{\boldsymbol{e}} \right)} \right)} \right],\\T = \left\{ \begin{array}{l}\mathit{\boldsymbol{e}} \in \hat V:{a_u}\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}}} \right) = R\left( \mathit{\boldsymbol{w}} \right)\;\;\;\;\;\forall \mathit{\boldsymbol{w}} \in V;\\b\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{q}}} \right) = 0\;\;\;\;\forall \mathit{\boldsymbol{q}} \in Q\end{array} \right\}.\end{array}$ (25)
在此基础上,通过引入Lagrange乘子将上述约束优化问题转化为无约束优化问题,相应的Lagrange形式为
$\begin{array}{*{20}{c}}{{L^ \pm }\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}},\mathit{\boldsymbol{q}}} \right): = }\\{ \pm {l^O}\left( \mathit{\boldsymbol{e}} \right) + \kappa \left( {{a_u}\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{e}}} \right) - R\left( \mathit{\boldsymbol{e}} \right)} \right) + R\left( \mathit{\boldsymbol{w}} \right) - }\\{{a_u}\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}}} \right) + b\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{q}}} \right).}\end{array}$ (26)
则误差 (IIh) 为
$ \pm \left( {I - {I_h}} \right) = \mathop {\min }\limits_{\mathit{\boldsymbol{e}} \in \hat V} \mathop {\max }\limits_{\mathit{\boldsymbol{w}} \in V,\mathit{\boldsymbol{q}} \in Q} {L^ \pm }\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}},\mathit{\boldsymbol{q}}} \right).$ (27)
进一步地,对于取定的wh±Vqh±Q
$\begin{array}{*{20}{c}}{ \pm \left( {I - {I_h}} \right) \ge \mathop {\max }\limits_{\mathit{\boldsymbol{w}} \in V,\mathit{\boldsymbol{q}} \in Q} \mathop {\min }\limits_{\mathit{\boldsymbol{e}} \in \hat V} {L^ \pm }\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}},\mathit{\boldsymbol{q}}} \right) \ge }\\{\mathop {\min }\limits_{\mathit{\boldsymbol{e}} \in \hat V} {L^ \pm }\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}}_h^ \pm ,\mathit{\boldsymbol{q}}_h^ \pm } \right).}\end{array}$ (28)

$\mathop {\min }\limits_{\mathit{\boldsymbol{e}} \in \hat V} {L^ + }\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}}_h^ + ,\mathit{\boldsymbol{q}}_h^ + } \right) \le I - {I_h} \le - \mathop {\min }\limits_{\mathit{\boldsymbol{e}} \in \hat V} {L^ - }\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}}_h^ - ,\mathit{\boldsymbol{q}}_h^ - } \right).$ (29)
给出了 (I-Ih) 的严格上下界。
3.2 误差上下界计算方法式 (28) 中的wh±qh±取在Lagrange形式 (26) 在子空间${{\hat V}_h} \times {V_h} \times {Q_h} \subset \hat V \times V \times Q$中的鞍点处,
${L^ \pm }\left( {\mathit{\boldsymbol{e}}_h^ \pm ,\mathit{\boldsymbol{w}}_h^ \pm ,\mathit{\boldsymbol{q}}_h^ \pm } \right) = \mathop {\min }\limits_{\mathit{\boldsymbol{e}} \in {{\hat V}_h}} \mathop {\max }\limits_{\mathit{\boldsymbol{w}} \in {V_h},\mathit{\boldsymbol{q}} \in {Q_h}} {L^ \pm }\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}},\mathit{\boldsymbol{q}}} \right).$ (30)
其中:${{\hat V}_h} = \hat V \cap {P_h}$; Qh={q∈Πh(γh), ?γhΞ(Γh):q|?2Ω=0}; Πh(·) 表示与Ph对应的多项式空间。该鞍点问题的驻值条件为
$\begin{array}{*{20}{c}}{b\left( {\mathit{\boldsymbol{v}},\mathit{\boldsymbol{q}}_h^ \pm } \right) \pm {l^O}\left( \mathit{\boldsymbol{v}} \right) + \kappa \left( {2{a_u}\left( {\mathit{\boldsymbol{e}}_h^ \pm ,\mathit{\boldsymbol{v}}} \right) - R\left( \mathit{\boldsymbol{v}} \right)} \right) - }\\{{a_u}\left( {\mathit{\boldsymbol{v}},\mathit{\boldsymbol{w}}_h^ \pm } \right) = 0\;\;\;\;\forall \mathit{\boldsymbol{v}} \in {{\hat V}_h},}\end{array}$ (31a)
$R\left( \mathit{\boldsymbol{v}} \right) - {a_u}\left( {\mathit{\boldsymbol{e}}_h^ \pm ,\mathit{\boldsymbol{v}}} \right) = 0\;\;\;\;\forall \mathit{\boldsymbol{v}} \in {V_h},$ (31b)
$b\left( {\mathit{\boldsymbol{e}}_h^ \pm ,\mathit{\boldsymbol{p}}} \right) = 0\;\;\;\;\;\forall \mathit{\boldsymbol{p}} \in {Q_h}.$ (31c)
式 (31c) 表明eh±Vh,进一步可由式 (31b) 得到eh±=0,则式 (31a) 简化为
${a_u}\left( {\mathit{\boldsymbol{v}},\mathit{\boldsymbol{w}}_h^ \pm } \right) = \pm {l^O}\left( \mathit{\boldsymbol{v}} \right) - \kappa R\left( \mathit{\boldsymbol{v}} \right) + b\left( {\mathit{\boldsymbol{v}},\mathit{\boldsymbol{q}}_h^ \pm } \right)\;\;\;\;\;\forall \mathit{\boldsymbol{v}} \in {{\hat V}_h}.$ (32)
当取?vVh?${{\hat V}_h}$时,该式退化为au(v, wh)=lO(v),而wh±wh。将该wh±带入式 (31a) 并令qh±=$ \mp $q0h+κq1h,可将该式分解为
$b\left( {\mathit{\boldsymbol{v}},{\mathit{\boldsymbol{q}}_{0h}}} \right) = {l^O}\left( \mathit{\boldsymbol{v}} \right) - {a_u}\left( {\mathit{\boldsymbol{v}},{\mathit{\boldsymbol{w}}_h}} \right)\;\;\;\;\;\forall \mathit{\boldsymbol{v}} \in {{\hat V}_h},$ (33a)
$b\left( {\mathit{\boldsymbol{v}},{\mathit{\boldsymbol{q}}_{1h}}} \right) = l\left( \mathit{\boldsymbol{v}} \right) - {a_u}\left( {{\mathit{\boldsymbol{u}}_h},\mathit{\boldsymbol{v}}} \right)\;\;\;\;\;\forall \mathit{\boldsymbol{v}} \in {{\hat V}_h}.$ (33b)
由此,考虑式 (29) 中的优化问题,即求解$\mathit{\boldsymbol{e}} = \mathit{\boldsymbol{\tilde e}}_h^ \pm \in \hat V$使得L±(e, wh±, qh±) 取最小值,相应的驻值条件为
$\begin{array}{*{20}{c}}{ \pm {l^O}\left( \mathit{\boldsymbol{v}} \right) + \kappa \left( {2{a_u}\left( {\mathit{\boldsymbol{\tilde e}}_h^ \pm ,\mathit{\boldsymbol{v}}} \right) - R\left( \mathit{\boldsymbol{v}} \right)} \right) - }\\{{a_u}\left( {\mathit{\boldsymbol{v}},\mathit{\boldsymbol{w}}_h^ \pm } \right) + b\left( {\mathit{\boldsymbol{v}},\mathit{\boldsymbol{q}}_h^ \pm } \right) = 0\;\;\;\;\forall \mathit{\boldsymbol{v}} \in \hat V.}\end{array}$ (34)
$\mathit{\boldsymbol{\tilde e}}_h^ \pm = \mp {{\mathit{\boldsymbol{\tilde e}}}_{0h}}/\kappa + {{\mathit{\boldsymbol{\tilde e}}}_{1h}}$,则上式可分解为
$\begin{array}{*{20}{c}}{2{a_u}\left( {{{\mathit{\boldsymbol{\tilde e}}}_{0h}},\mathit{\boldsymbol{v}}} \right) = {l^O}\left( \mathit{\boldsymbol{v}} \right) - b\left( {\mathit{\boldsymbol{v}},{\mathit{\boldsymbol{q}}_{0h}}} \right) - }\\{{a_u}\left( {\mathit{\boldsymbol{v}},{\mathit{\boldsymbol{w}}_h}} \right)\;\;\;\;\;\forall \mathit{\boldsymbol{v}} \in \hat V,}\end{array}$ (35a)
$\begin{array}{*{20}{c}}{2{a_u}\left( {{{\mathit{\boldsymbol{\tilde e}}}_{1h}},\mathit{\boldsymbol{v}}} \right) = l\left( \mathit{\boldsymbol{v}} \right) - b\left( {\mathit{\boldsymbol{v}},{\mathit{\boldsymbol{q}}_{1h}}} \right) - }\\{{a_u}\left( {{\mathit{\boldsymbol{u}}_h},\mathit{\boldsymbol{v}}} \right)\;\;\;\;\;\forall \mathit{\boldsymbol{v}} \in \hat V.}\end{array}$ (35b)
该式为确定${{\mathit{\boldsymbol{\tilde e}}}_{0h}}$${{\mathit{\boldsymbol{\tilde e}}}_{1h}}$的控制方程。
3.3 可计算的误差上下界表达考虑式 (34) 与R(wh±)=0,可得到L±(e, wh±, qh±) 的最小值为
$\begin{array}{*{20}{c}}{\mathop {\min }\limits_{\mathit{\boldsymbol{e}} \in \hat V} {L^ + }\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}}_h^ + ,\mathit{\boldsymbol{q}}_h^ + } \right) = {L^ \pm }\left( {\mathit{\boldsymbol{\tilde e}}_h^ \pm ,\mathit{\boldsymbol{w}}_h^ \pm ,\mathit{\boldsymbol{q}}_h^ \pm } \right) = }\\{ - \kappa \left\| {\mathit{\boldsymbol{\tilde e}}_h^ \pm } \right\|_u^2.}\end{array}$ (36)
进一步代入$\mathit{\boldsymbol{\tilde e}}_h^ \pm = m{{\mathit{\boldsymbol{\tilde e}}}_{0h}}/\kappa + {{\mathit{\boldsymbol{\tilde e}}}_{1h}}$可将式 (29) 重新表达为
$\begin{array}{*{20}{c}}{\left| {I - {I_h} - 2{a_u}\left( {{{\mathit{\boldsymbol{\tilde e}}}_{0h}},{{\mathit{\boldsymbol{\tilde e}}}_{1h}}} \right)} \right| \le }\\{\kappa \left\| {{{\mathit{\boldsymbol{\tilde e}}}_{1h}}} \right\|_u^2 + \frac{1}{\kappa }\left\| {{{\mathit{\boldsymbol{\tilde e}}}_{0h}}} \right\|_u^2.}\end{array}$ (37)
而当$\kappa = {\left\| {{{\mathit{\boldsymbol{\tilde e}}}_{0h}}} \right\|_u}/{\left\| {{{\mathit{\boldsymbol{\tilde e}}}_{1h}}} \right\|_u}$时该不等式右侧取最小值,故可得到 (I-Ih) 的严格、可计算上下界如下:
$\left\{ \begin{array}{l}{I^{{\rm{upper}}}} - {I_h} = 2{a_u}\left( {{{\mathit{\boldsymbol{\tilde e}}}_{0h}},{{\mathit{\boldsymbol{\tilde e}}}_{1h}}} \right) + 2{\left\| {{{\mathit{\boldsymbol{\tilde e}}}_{1h}}} \right\|_u}{\left\| {{{\mathit{\boldsymbol{\tilde e}}}_{0h}}} \right\|_u},\\{I^{{\rm{lower}}}} - {I_h} = 2{a_u}\left( {{{\mathit{\boldsymbol{\tilde e}}}_{0h}},{{\mathit{\boldsymbol{\tilde e}}}_{1h}}} \right) - 2{\left\| {{{\mathit{\tilde e}}_{1h}}} \right\|_u}{\left\| {{{\mathit{\boldsymbol{\tilde e}}}_{0h}}} \right\|_u}.\end{array} \right.$ (38)
4 两种方法的等价性如前文所述,在本构误差关系法 (后文简称为本构法) 与凸目标函数优化法 (后文简称为优化法) 的求解步骤中,均采用有限元法求解原问题 (见式 (7)) 和完全一致的伴随问题 (见式 (18) 与式 (32)),得到原问题的近似解uh与伴随问题的近似解wh。不难看出,通过进一步论证本构法中对平衡应力场${{\mathit{\boldsymbol{\tilde \sigma }}}_h}$${{\mathit{\boldsymbol{\tilde \tau }}}_h}$的构造同优化法中${{\mathit{\boldsymbol{\tilde e}}}_{0h}}$${{\mathit{\boldsymbol{\tilde e}}}_{1h}}$的求解具有一致性,即可说明2种方法计算目标量严格误差界的列式的一致性。此外,这种列式上的一致性的背后是基本原理上的等价性。本节通过讨论这些内容来说明2种方法的等价性。
4.1 计算列式的一致性在采用本构法进行面向目标误差估计时,对任意单元E,平衡应力场${{\mathit{\boldsymbol{\tilde \sigma }}}_h}$的构造所遵循的原则包括 (以处理原问题为例):
1) 单元内部满足平衡方程,且单元边界与Neumann边界重合时满足Neumann边界条件,即
$\left\{ \begin{array}{l}\nabla \cdot {{\mathit{\boldsymbol{\tilde \sigma }}}_h} + {\mathit{\boldsymbol{f}}_p} = {\bf{0}}\;\;\;{\rm{in}}\;E,\\\mathit{\boldsymbol{n}} \cdot {{\mathit{\boldsymbol{\tilde \sigma }}}_h} = {\mathit{\boldsymbol{T}}_p}\;\;\;\;{\rm{on}}\;\;\;\partial E \cap {\partial _2}\mathit{\Omega }\mathit{.}\end{array} \right.$ (39)
或者表示为弱形式,即
$\begin{array}{*{20}{c}}{a_\sigma ^E\left( {{{\mathit{\boldsymbol{\tilde \sigma }}}_h},\mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( \mathit{\boldsymbol{v}} \right)} \right) = }\\{{l^E}\left( \mathit{\boldsymbol{v}} \right) - \int_{\partial E} {{\mathit{\boldsymbol{p}}_h} \cdot \mathit{\boldsymbol{v}}{\rm{d}}\mathit{\Omega }} \;\;\;\;\forall \mathit{\boldsymbol{v}} \in {{\left[ {{H^1}\left( E \right)} \right]}^3}.}\end{array}$ (40a)
其中l(v) 在单元E上的限制lE(v) 与单元内部边界面力ph定义如下:
$\begin{array}{*{20}{c}}{{l^E}\left( \mathit{\boldsymbol{v}} \right) = \int_E {{\mathit{\boldsymbol{f}}_p} \cdot \mathit{\boldsymbol{v}}{\rm{d}}\mathit{\Omega }} + \int_{\partial E \cap {\partial _2}\mathit{\Omega }} {{\mathit{\boldsymbol{T}}_p} \cdot \mathit{\boldsymbol{v}}{\rm{d}}\partial \mathit{\Omega }} ,}\\{{\mathit{\boldsymbol{p}}_h} = \left\{ \begin{array}{l} - \mathit{\boldsymbol{n}} \cdot {{\mathit{\boldsymbol{\tilde \sigma }}}_h},\;\;{\rm{on}}\;\;\;\partial E\backslash \left( {\partial E \cap {\partial _2}\mathit{\Omega }} \right),\\0,\;\;\;\;\;\;\;\;\;\;{\rm{on}}\;\;\partial E \cap {\partial _2}\mathit{\Omega }\mathit{.}\end{array} \right.}\end{array}$ (40b)
2) 单元交界处面力平衡,即对?γhΞ(Γh)\(Ξ(Γh)∩?2Ω),γh=?E?E′,满足
${\mathit{\boldsymbol{p}}_h}\left| {_{{\gamma _h} \cap \partial E}} \right. + {\mathit{\boldsymbol{p}}_h}\left| {_{{\gamma _h} \cap \partial E'}} \right. = 0.$ (41)
3) 单元内满足延长条件式 (11),若结合式 (40a),延长条件还可以表达为如下形式:
$\begin{array}{*{20}{c}}{\int_{\partial E} {{\mathit{\boldsymbol{p}}_h} \cdot {\mathit{\boldsymbol{\varphi }}_i}{\rm{d}}\mathit{\Omega }} = {l^E}\left( \mathit{\boldsymbol{v}} \right) - a_{^\sigma }^E\left( {{\mathit{\boldsymbol{\sigma }}_h},\mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{\varphi }}_i}} \right)} \right),}\\{i = 1,2, \cdots .}\end{array}$ (42)
其中φi为描述H1(E)∩Ph的每一个形函数;此外,为了保证该平衡应力场构造的可解性,还要求ph|γh?E∈Πh(γh)。
在本构方法的具体实施中,满足以上3个条件即可构造出平衡应力场${{\mathit{\boldsymbol{\tilde \sigma }}}_h}$。不难看出,式 (41)、(42) 与式 (33b) 完全一致;进一步对比可见,式 (40a) 与式 (35b) 一致。考虑到伴随问题中平衡应力场的构造与原问题同理,2种方法中相应量的等价关系如下:
$\begin{array}{*{20}{c}}{{\mathit{\boldsymbol{q}}_{1h}}\left| {_{{\gamma _h}}} \right. = {\mathit{\boldsymbol{p}}_h}\left| {_{{\gamma _h} \cap \partial E}} \right.,\;\;\;\;\;{\mathit{\boldsymbol{q}}_{0h}}\left| {_{{\gamma _h}}} \right. = {\mathit{\boldsymbol{s}}_h}\left| {_{{\gamma _h} \cap \partial E}} \right.,}\\{\mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{{\mathit{\boldsymbol{\tilde e}}}_{1h}}} \right) = \frac{{{{\mathit{\boldsymbol{\tilde \sigma }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{u}}_h}} \right)}}{2},}\end{array}$ (43a)
$\mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{{\mathit{\boldsymbol{\tilde e}}}_{0h}}} \right) = \frac{{{{\mathit{\boldsymbol{\tilde \tau }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{w}}_h}} \right)}}{2}.$ (43b)
其中sh为伴随问题中与ph定义一致的单元边界面力。
由式 (43) 所示的等价关系可见,由本构法得到的误差上下界式 (22) 与由优化法得到的误差上下界式 (38) 是对应相等的。
值得说明的是,在本构法构造平衡应力场时,延长条件是“空降”的,但其具有很优秀的“平衡性质”。1) 由式 (42) 构造的任意单元E的边界力ph与该单元上给定外力是平衡的:若此单元发生任意形式的刚体位移r,该刚体位移可通过完备的形函数线性表示,即r=riφi;考虑到ε(r)=0,由式 (42) 可得:
${l^E}\left( \mathit{\boldsymbol{v}} \right) - \int_{\partial E} {{\mathit{\boldsymbol{p}}_h} \cdot \mathit{\boldsymbol{r}}{\rm{d}}\mathit{\Omega }} = 0.$ (44)
即意味着边界力与给定外力平衡;这种性质是通过延长条件式 (42) 从平衡方程式 (40a) 处继承来的。2) 如式 (42) 所示,对于所有公用节点的单元,等号左边相加即公用节点边界上ph在该点处的等效荷载之和,由于共用边界的单元在该边界处的面力等大反向如式 (41),此加和应为0,而等号右边相加之和为0则是由有限元列式直接决定的。
然而在优化法中,延长条件式 (33) 是由驻值条件式 (32) 得到,并非“空降”,从优化法的基本思路也可进一步认识上述2种“平衡性质”的根源。对于刚体位移rau(r, v)=0,?v∈[H1(E)]3Ph,则式 (33) 可保证单元边界力与外力的平衡;当考察公用节点边界在该点处的等效荷载之和时,这些公用节点单元之间的连续性 (协调性) 没有被破坏,当式 (33) 等号右端限定在这些单元时,有限元列式保证其为零。
4.2 基本原理的等价性在本节中,从另一视角分别看待2种方法,进一步考察2种方法的一致性,并得到二者在原理上的等价性。
对于本构法,目标量误差式 (19) 可以进一步表示为
$\begin{array}{*{20}{c}}{I - {I_h} = \frac{1}{4}\left\| {\sqrt \kappa \mathit{\boldsymbol{e + }}\frac{1}{{\sqrt \kappa }}\mathit{\boldsymbol{\varepsilon }}} \right\|_u^2 - }\\{\frac{1}{4}\left\| {\sqrt \kappa \mathit{\boldsymbol{e}} - \frac{1}{{\sqrt \kappa }}\mathit{\boldsymbol{\varepsilon }}} \right\|_u^2.}\end{array}$ (45)
其中$\kappa ={{\mathbb{R}}^{+}}$,则 (IIh) 的上下界可表示为
$\begin{array}{*{20}{c}}{ - \frac{1}{4}\left\| {\sqrt \kappa \mathit{\boldsymbol{e}} - \frac{1}{{\sqrt \kappa }}\mathit{\boldsymbol{\varepsilon }}} \right\|_u^2 \le I - {I_h} \le }\\{\frac{1}{4}\left\| {\sqrt \kappa \mathit{\boldsymbol{e + }}\frac{1}{{\sqrt \kappa }}\mathit{\boldsymbol{\varepsilon }}} \right\|_u^2.}\end{array}$ (46)
由式 (10b) 可得
$\begin{array}{*{20}{c}}{\frac{1}{4}\left\| {\sqrt \kappa \mathit{\boldsymbol{e}} \pm \frac{1}{{\sqrt \kappa }}\mathit{\boldsymbol{\varepsilon }}} \right\|_u^2 \le }\\{\frac{1}{4}\left\| {\sqrt \kappa \left( {{{\mathit{\boldsymbol{\tilde \sigma }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{u}}_h}} \right)} \right) \pm \frac{1}{{\sqrt \kappa }}\left( {{{\mathit{\boldsymbol{\tilde \tau }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{w}}_h}} \right)} \right)} \right\|_u^2 = }\\{ \pm \frac{1}{2}{a_\sigma }\left( {{{\mathit{\boldsymbol{\tilde \sigma }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{u}}_h}} \right),{{\mathit{\boldsymbol{\tilde \tau }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{w}}_h}} \right)} \right) + }\\{\frac{\kappa }{4}e_{{\rm{CRE}}}^2\left( {{\mathit{\boldsymbol{u}}_h},{{\mathit{\boldsymbol{\tilde \sigma }}}_h}} \right) + \frac{1}{{4\kappa }}e_{{\rm{CRE}}}^2\left( {{\mathit{\boldsymbol{w}}_h},{{\mathit{\boldsymbol{\tilde \tau }}}_h}} \right).}\end{array}$ (47)
可见这种形式已与优化法的式 (37) 一致。当$\kappa = {e_{{\rm{CRE}}}}\left( {{\mathit{\boldsymbol{w}}_h},{{\mathit{\boldsymbol{\tilde \tau }}}_h}} \right)/{e_{{\rm{CRE}}}}\left( {{\mathit{\boldsymbol{u}}_h},{{\mathit{\boldsymbol{\tilde \sigma }}}_h}} \right)$时,得到如式 (22) 所示的可计算的目标误差上下界。
对于优化法,目标量误差式 (23) 亦可表示为
$ \pm \left( {I - {I_h}} \right) = \mathop {\min }\limits_{\mathit{\boldsymbol{e}} \in V} \mathop {\max }\limits_{\mathit{\boldsymbol{w}} \in V} L_0^ \pm \left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}}} \right).$ (48)
其中
$\begin{array}{*{20}{c}}{L_0^ \pm \left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}}} \right): = }\\{ \pm {l^O}\left( \mathit{\boldsymbol{e}} \right) + \kappa \left( {{a_u}\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{e}}} \right) - R\left( \mathit{\boldsymbol{e}} \right)} \right) + R\left( w \right) - {a_u}\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}}} \right) = }\\{{L^ \pm }\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w,q}}} \right) - b\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{q}}} \right).}\end{array}$ (49)
而对于伴随问题的解wh±wh
$ \pm \left( {I - {I_h}} \right) \ge \mathop {\min }\limits_{\mathit{\boldsymbol{e}} \in V} L_0^ \pm \left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}}_h^ \pm } \right).$ (50)
该式右侧对应的驻值条件为e0±V
$\begin{array}{*{20}{c}}{ \pm {l^O}\left( \mathit{\boldsymbol{v}} \right) + \kappa \left( {2{a_u}\left( {\mathit{\boldsymbol{e}}_0^ \pm ,\mathit{\boldsymbol{v}}} \right) - R\left( \mathit{\boldsymbol{v}} \right)} \right) - {a_u}\left( {\mathit{\boldsymbol{v}},\mathit{\boldsymbol{w}}_h^ \pm } \right) = 0}\\{\forall \mathit{\boldsymbol{v}} \in V.}\end{array}$ (51)
该驻值点e0±可用原问题与伴随问题的位移误差场eε表示如下:
$\mathit{\boldsymbol{e}}_0^ \pm = \frac{1}{2}\left( {\mathit{\boldsymbol{e}} \mp \frac{1}{\kappa }\mathit{\boldsymbol{\varepsilon }}} \right),$ (52)
代入式 (49) 与 (50) 可得
$ \pm \left( {I - {I_h}} \right) \ge L_0^ \pm \left( {\mathit{\boldsymbol{e}}_0^ \pm ,\mathit{\boldsymbol{w}}_0^ \pm } \right) = - \frac{1}{4}\left\| {\sqrt \kappa \mathit{\boldsymbol{e}} \mp \frac{1}{{\sqrt \kappa }}\mathit{\boldsymbol{\varepsilon }}} \right\|_u^2.$ (53)
可见与本构法的式 (46) 完全相同。然而,由于eε是不可计算的,故需要将上式所示的界进一步放宽。优化法对此作如下考虑:由于
$\begin{array}{*{20}{c}}{\mathop {\min }\limits_{e \in V} L_0^ \pm \left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}}_h^ \pm } \right) = \mathop {\min }\limits_{e \in V} {L^ \pm }\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}}_h^ \pm ,\mathit{\boldsymbol{q}}_h^ \pm } \right) \ge }\\{\mathop {\min }\limits_{e \in \hat V} {L^ \pm }\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}}_h^ \pm ,\mathit{\boldsymbol{q}}_h^ \pm } \right),}\end{array}$ (54)
故目标量的严格上下界由${\mathop {\min }\limits_{e \in \hat V} {L^ \pm }\left( {\mathit{\boldsymbol{e}},\mathit{\boldsymbol{w}}_h^ \pm ,\mathit{\boldsymbol{q}}_h^ \pm } \right)} $给出,如式 (36)—(38) 所示。
从上述讨论可见,本构法与优化法都得到相同的误差界式 (46) 或 (53),并各自采用不同的思路对该误差界进行放松,得到可计算的形式。其中,本构法引入了平衡应力场与本构关系误差,如式 (47) 所示;优化法则继续放松约束,如式 (54) 所示;这2种思路看似相异,但其原理完全一致,即线弹性体的余能最小值原理。
2种方法对于误差界式 (46) 或 (53) 的放松,都归结于求${\left\| {\sqrt {\kappa \mathit{\boldsymbol{e}}} \mp \mathit{\boldsymbol{\varepsilon /}}\sqrt \kappa } \right\|_u}$的可计算上界。对于$\mathit{\boldsymbol{\xi }}_\kappa ^ \mp = \sqrt {\kappa \mathit{\boldsymbol{e}}} \mp \mathit{\boldsymbol{\varepsilon /}}\sqrt \kappa $,可视为如下问题的解:求解$\mathit{\boldsymbol{\xi }}_\kappa ^ \mp \in V$使得:
${a_u}\left( {\mathit{\boldsymbol{\xi }}_\kappa ^ \mp ,\mathit{\boldsymbol{v}}} \right) = \sqrt \kappa R\left( \mathit{\boldsymbol{v}} \right) \mp {R^O}\left( \mathit{\boldsymbol{v}} \right)/\sqrt \kappa .$ (55)
其中RO(·):=lO(·)-au(wh, ·)。若将此问题视为一个线弹性问题,则其对应的平衡条件为
$\begin{array}{*{20}{c}}{E_\kappa ^ \mp : = \left\{ {\mathit{\boldsymbol{\zeta }}_\kappa ^ \mp \in \zeta :{a_\sigma }\left( {\mathit{\boldsymbol{\zeta }}_\kappa ^ \mp ,\mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( \mathit{\boldsymbol{v}} \right)} \right) = } \right.}\\{\left. {\sqrt \kappa R\left( \mathit{\boldsymbol{v}} \right) \mp {R^O}\left( \mathit{\boldsymbol{v}} \right)/\sqrt \kappa \;\;\;\;\forall \mathit{\boldsymbol{v}} \in V} \right\}.}\end{array}$ (56)
考虑到该线弹性体系的内力势能与余能值相等,由余能最小值原理可得:
$\begin{array}{*{20}{c}}{\frac{1}{2}\left\| {\sqrt \kappa \mathit{\boldsymbol{e}} \mp \mathit{\boldsymbol{\varepsilon }}/\sqrt \kappa } \right\|_u^2 = }\\{\mathop {\min }\limits_{\zeta _\kappa ^ \mp \in E_\kappa ^ \mp } \frac{1}{2}\left\| {\mathit{\boldsymbol{\zeta }}_\kappa ^ \mp } \right\|_\sigma ^2 \le \frac{1}{2}\left\| {\mathit{\boldsymbol{\zeta }}_\kappa ^{ \mp *}} \right\|_\sigma ^2.}\end{array}$ (57)
其中$\mathit{\boldsymbol{\xi }}_\kappa ^{ \mp *} \in E_\kappa ^ \mp $。依据前文对本构法与优化法的讨论,2种方法对$\mathit{\boldsymbol{\xi }}_\kappa ^{ \mp *}$的取法为
$\mathit{\boldsymbol{\zeta }}_\kappa ^{ \mp * } = \sqrt \kappa \left( {{{\mathit{\boldsymbol{\tilde \sigma }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{u}}_h}} \right)} \right) \mp \frac{1}{{\sqrt \kappa }}\left( {{{\mathit{\boldsymbol{\tilde \tau }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{w}}_h}} \right)} \right),$ (58a)
$\begin{array}{*{20}{c}}{\mathit{\boldsymbol{\zeta }}_\kappa ^{ \mp * } = 2\mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {\sqrt \kappa {{\mathit{\boldsymbol{\tilde e}}}_{1h}} \mp \frac{1}{{\sqrt \kappa }}{{\mathit{\boldsymbol{\tilde e}}}_{0h}}} \right) = }\\{2\sqrt \kappa \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {\mathit{\boldsymbol{\tilde e}}_h^ \pm } \right).}\end{array}$ (58b)
前文已述这2种取法完全相等。回到目标误差估计问题,
$\begin{array}{*{20}{c}}{ \pm \left( {I - {I_h}} \right) \ge - \frac{1}{4}\left\| {\sqrt \kappa \mathit{\boldsymbol{e}} \mp \frac{1}{{\sqrt \kappa }}\mathit{\boldsymbol{\varepsilon }}} \right\|_u^2 \ge }\\{ - \frac{1}{4}\left\| {\mathit{\boldsymbol{\zeta }}_\kappa ^{ \mp * }} \right\|_\sigma ^2.}\end{array}$ (59)
在2种方法中,
$\begin{array}{*{20}{c}}{ - \frac{1}{4}\left\| {\mathit{\boldsymbol{\zeta }}_\kappa ^{ \mp * }} \right\|_\sigma ^2 = - \frac{1}{4}\left\| {\sqrt \kappa \left( {{{\mathit{\boldsymbol{\tilde \sigma }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{u}}_h}} \right)} \right) \mp } \right.}\\{\left. {\frac{1}{{\sqrt \kappa }}\left( {{{\mathit{\boldsymbol{\tilde \tau }}}_h} - \mathit{\boldsymbol{H}}:\mathit{\boldsymbol{\varepsilon }}\left( {{\mathit{\boldsymbol{w}}_h}} \right)} \right)} \right\|_u^2 = - \kappa \left\| {\mathit{\boldsymbol{\tilde e}}_h^ \pm } \right\|_u^2.}\end{array}$ (60)
即式 (47) 和式 (36)。
5 结论本文论证了本构关系误差法与凸目标函数约束优化法在对有界线性泛函目标量进行面向目标误差估计时的计算列式的一致性和基本原理的等价性;经过对比讨论,2种方法基本思想的实质均为余能最小值原理。本构关系误差形式简明、力学意义明确,但表达格式受到本构形式的限制,在拓展到其他问题时处理方案不甚直观;凸目标函数约束优化法表述方式比较复杂,但数学本质更为明确,数学上的一般性更为明显,便于向更复杂的问题进行拓展。对2种方法等价性的讨论有助于2种表达格式的互补,以在更复杂的问题中形成实用有效、简明清晰的表达形式。

参考文献
[1] Journal of Central South University(Science and Technology), 41(2):649-654.-->Ladevèze P, Pelle J P. Mastering Calculations in Linear and Nonlinear Mechanics[M]. New York: Springer, 2004.
[2] Journal of Central South University(Science and Technology), 41(2):649-654.-->Ainsworth M, Oden J T. A Posteriori Error Estimation in Finite Element Analysis[M]. New York: John Wiley & Sons, 2000.
[3] Journal of Central South University(Science and Technology), 41(2):649-654.-->Gr?tsch T, Bathe K J. A posteriori error estimation techniques in practical finite element analysis[J]. Computers & Structures, 2005, 83(4): 235–265.
[4] Journal of Central South University(Science and Technology), 41(2):649-654.-->Babu?ka I, Rheinboldt W C. Error estimates for adaptive finite element computations[J]. SIAM Journal on Numerical Analysis, 1983, 20(4): 736–754.
[5] Journal of Central South University(Science and Technology), 41(2):649-654.-->Babu?ka I, Rheinboldt W C. A posterior estimates for the finite element method[J]. International Journal for Numerical Methods in Engineering, 1978, 12(10): 1597–1615. DOI:10.1002/(ISSN)1097-0207
[6] Journal of Central South University(Science and Technology), 41(2):649-654.-->Bank R E, Weiser A. Some a posteriori error estimators for elliptic partial differential equations[J]. Mathematics of Computation, 1985, 44(170): 283–301. DOI:10.1090/S0025-5718-1985-0777265-X
[7] Journal of Central South University(Science and Technology), 41(2):649-654.-->Zienkiewicz O C, Zhu J Z. A simple error estimator and adaptive procedure for practical engineering analysis[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2): 337–357. DOI:10.1002/(ISSN)1097-0207
[8] Journal of Central South University(Science and Technology), 41(2):649-654.-->Deufhard P, Leinen P, Yserentant H. Concepts of an adaptive hierarchical finite element code[J]. Impact of Computing in Science and Engineering, 1989, 1(1): 3–35. DOI:10.1016/0899-8248(89)90018-9
[9] Journal of Central South University(Science and Technology), 41(2):649-654.-->Ladevèze P, Leguillon D. Error estimate procedure in the finite element method and application[J]. SIAM Journal on Numerical Analysis, 1983, 20(3): 485–509. DOI:10.1137/0720033
[10] Journal of Central South University(Science and Technology), 41(2):649-654.-->Becker R, Rannacher R. An optimal control approach to a posteriori error estimation in finite element method[J]. Acta Numerica, 2001, 10: 1–102.
[11] Journal of Central South University(Science and Technology), 41(2):649-654.-->Giles M B, Süli E. Adjoint methods for PDEs: A posteriori error analysis and postprocessing by duality[J]. Acta Numerica, 2002, 11: 145–236.
[12] Journal of Central South University(Science and Technology), 41(2):649-654.-->Estep D. A posteriori error bounds and global error control for approximations of ordinary differential equations[J]. SIAM Journal on Numerical Analysis, 1995, 32(1): 1–48. DOI:10.1137/0732001
[13] Journal of Central South University(Science and Technology), 41(2):649-654.-->Rannacher R, Suttmeier F T. A feed-back approach to error control in finite element methods: Application to linear elasticity[J]. Computational Mechanics, 1997, 19(5): 434–446. DOI:10.1007/s004660050191
[14] Journal of Central South University(Science and Technology), 41(2):649-654.-->Fidkowski K J, Darmofal D L. Review of output-based error estimation and mesh adaptation in computational fluid dynamics[J]. AIAA Journal, 2011, 49(4): 673–694. DOI:10.2514/1.J050073
[15] Journal of Central South University(Science and Technology), 41(2):649-654.-->Bangerth W, Rannacher R. Adaptive Finite Element Methods for Differential Equations[M]. Basel: Birkh?user, 2003.
[16] Journal of Central South University(Science and Technology), 41(2):649-654.-->Oden J T, Prudhomme S. Goal-oriented error estimation and adaptivity for the finite element method[J]. Computers and Mathematics with Applications, 2001, 41(5): 735–756.
[17] Journal of Central South University(Science and Technology), 41(2):649-654.-->Gr?tsch T, Hartmann F. Pointwise error estimation and adaptivity for the finite element method using fundamental solutions[J]. Computational Mechanics, 2006, 37(5): 394–407. DOI:10.1007/s00466-005-0711-4
[18] Journal of Central South University(Science and Technology), 41(2):649-654.--> Stein E, Rüter M. Finite element methods for elasticity with error-controlled discretization and model adaptivity[C]//Stein E, de Borst R, Hughes T J R. Encyclopedia of Computational Mechanics Ⅱ Solids and Structures. New York: John Wiley & Sons, 2004.
[19] Journal of Central South University(Science and Technology), 41(2):649-654.-->Ladevèze P, Rougeot P, Blanchard P, et al. Local error estimators for finite element linear analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 176(1-4): 231–246. DOI:10.1016/S0045-7825(98)00339-9
[20] Journal of Central South University(Science and Technology), 41(2):649-654.-->Chamoin L, Ladevèze P. Strict and practical bounds through a non-intrusive and goal-oriented error estimation method for linear viscoelasticity problems[J]. Finite Elements in Analysis and Design, 2009, 45(4): 251–262. DOI:10.1016/j.finel.2008.10.003
[21] Journal of Central South University(Science and Technology), 41(2):649-654.-->Panetier J, Ladevèze P, Louf F. Strict bounds for computed stress intensity factors[J]. Computers & Structures, 2009, 87(15): 1015–1021.
[22] Journal of Central South University(Science and Technology), 41(2):649-654.-->Ladevèze P. Strict upper error bounds on computed outputs of interest in computational structural mechanics[J]. Computational Mechanics, 2008, 42(2): 271–286. DOI:10.1007/s00466-007-0201-y
[23] Journal of Central South University(Science and Technology), 41(2):649-654.-->Florentin E, Gallimard L, Pelle J P. Evaluation of the local quality of stresses in 3D finite element analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(39): 4441–4457.
[24] Journal of Central South University(Science and Technology), 41(2):649-654.-->Ladevèze P, Pled F, Chamoin L. New bounding techniques for goal-oriented error estimation applied to linear problems[J]. International Journal for Numerical Methods in Engineering, 2013, 93(13): 1345–1380. DOI:10.1002/nme.v93.13
[25] Journal of Central South University(Science and Technology), 41(2):649-654.--> Patera A T, Peraire J. A general Lagrangian formulation for the computation of a posteriori finite element bounds[C]//Barth T J, Deconinck H. Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics. Berlin Heidelberg: Springer-Verlag, 2003: 159-206.
[26] Journal of Central South University(Science and Technology), 41(2):649-654.-->Pares N, Bonet J, Huerta A, et al. The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195(4-6): 406–429. DOI:10.1016/j.cma.2004.10.013
[27] Journal of Central South University(Science and Technology), 41(2):649-654.-->Sauer-Budge A M, Bonet J, Huerta A, et al. Computing bounds for linear functionals of exact solutions to Poisson's equation[J]. SIAM Journal on Numerical Analysis, 2004, 42(4): 1610–1630. DOI:10.1137/S0036142903425045
[28] Journal of Central South University(Science and Technology), 41(2):649-654.-->Pled F, Chamoin L, Ladevèze P. On the techniques for constructing admissible stress fields in model verification: Performances on engineering examples[J]. International Journal for Numerical Methods in Engineering, 2011, 88(5): 409–441. DOI:10.1002/nme.v88.5

相关话题/优化 计算

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 基于多方满意的PPP项目股权配置优化研究
    冯珂1,2,王守清1,2,薛彦广11.清华大学建设管理系,北京100084;2.清华大学恒隆房地产研究中心,北京100084收稿日期:2015-06-14基金项目:国家自然科学基金资助项目(71572089)作者简介:冯珂(1989—),男,博士研究生通信作者:王守清,教授,E-mail:sqwan ...
    本站小编 Free考研考试 2020-04-15
  • 球床高温气冷堆初装堆芯的物理计算方法及验证
    张竞宇,李富,孙玉良清华大学核能与新能源技术研究院,北京100084收稿日期:2012-07-11基金项目:国家自然科学基金资助项目(11375099,11605058);国家科技重大专项资助项目(ZX06901)作者简介:张竞宇(1984—),男,博士研究生通信作者:李富,研究员,E-mail:l ...
    本站小编 Free考研考试 2020-04-15
  • 基于层次化结构的语言模型单元集优化
    米吉提·阿不里米提1,2,艾克白尔·帕塔尔2,艾斯卡尔·艾木都拉1,21.新疆大学科学与技术学院,乌鲁木齐830046;2.新疆大学信息科学与工程学院,乌鲁木齐830046收稿日期:2016-06-22基金项目:国家自然科学基金资助项目(61462085,61662078,61163032);教育部 ...
    本站小编 Free考研考试 2020-04-15
  • 小资源下语音识别算法设计与优化
    张鹏远1,计哲2,侯炜2,金鑫2,韩卫生11.中国科学院声学研究所,语言声学与内容理解重点实验室,北京100190;2.国家计算机网络应急技术处理协调中心,北京100029收稿日期:2016-06-29基金项目:国家自然科学基金项目(U1536117,11590770,11590771,115907 ...
    本站小编 Free考研考试 2020-04-15
  • 考虑混凝土损伤效应的销栓作用承载力计算模型
    李鹏飞1,安雪晖1,何世钦2,陈宸21.清华大学水沙科学与水利水电工程国家重点实验室,北京100084;2.北方工业大学土木工程学院,北京100144收稿日期:2016-02-01基金项目:国家科技支撑计划项目(2015BAB07B07);水沙科学与水利水电工程国家重点实验室科研课题资助项目(201 ...
    本站小编 Free考研考试 2020-04-15
  • 医用加速器场所中子和感生γ光子剂量当量的计算分析
    陈宜正1,李君利1,邱睿1,武祯1,康玺21.清华大学工程物理系,粒子技术与辐射成像教育部重点实验室,北京100084;2.南华大学核科学技术学院,衡阳421001收稿日期:2015-10-26基金项目:国家科技重大专项子课题(2013ZX06002001-007);国家自然科学基金资助项目(112 ...
    本站小编 Free考研考试 2020-04-15
  • 完全轮廓法计算液体表面张力的改进
    周斌,李思维,陈志勇,张嵘清华大学精密仪器系,导航工程中心,北京100084收稿日期:2016-01-19基金项目:总装预研基金资助项目(9140A09011514)作者简介:周斌(1976-),男,副研究员通信作者:陈志勇,副研究员,E-mail:chendelta@mail.tsinghua.e ...
    本站小编 Free考研考试 2020-04-15
  • 基于脸部骨骼位置信息的唇凸度计算方法
    潘晓声1,张梦翰2,LiewWeeChung31.上海师范大学信息与机电工程学院,上海200234,中国;2.复旦大学生命科学学院,上海200438,中国;3.格里菲斯大学信息与通讯技术学院,昆士兰,澳大利亚收稿日期:2016-06-29基金项目:社科基金重大项目(13&ZD132);国家社科青年基 ...
    本站小编 Free考研考试 2020-04-15
  • 基于白化变换及曲率特征的3维物体识别及姿态计算
    郑军,魏海永清华大学机械工程系,先进成形制造教育部重点实验室,北京100084收稿日期:2016-03-24基金项目:国家科技重大专项(2015ZX04005006)作者简介:郑军(1971-),男,副研究员。E-mail:zhengj@mail.tsinghua.edu.cn摘要:为解决3维物体识 ...
    本站小编 Free考研考试 2020-04-15
  • 小型仿人足球机器人MOS-7的系统设计及局部优化
    张继文,刘莉,陈恳清华大学机械工程系,摩擦学国家重点实验室,精密超精密制造装备及控制北京市重点实验室,北京100084收稿日期:2015-08-26基金项目:清华大学摩擦学国家重点实验室项目(SKLT09A03);国家自然科学基金资助项目(61403225);中国博士后科学基金资助项目(2015M5 ...
    本站小编 Free考研考试 2020-04-15