删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

一种航空Adhoc网络优先级权重速率控制算法

清华大学 辅仁网/2017-07-07

一种航空Ad hoc网络优先级权重速率控制算法
高晓琳1,3, 晏坚2, 陆建华1
1. 清华大学 电子工程系, 北京 100084;
2. 清华大学 宇航技术研究中心, 北京 100084;
3. 北京航天飞行控制中心, 北京 100094
Priority weighted rate control algorithm in aeronautical Ad hoc networks
GAO Xiaolin1,3, YAN Jian2, LU Jianhua1
1. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2. Tsinghua Space Center, Tsinghua University, Beijing 100084, China;
3. Beijing Aerospace Control Center, Beijing 100094, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要针对现有航空Ad hoc网络的媒体接入控制(media access control,MAC)协议存在信道资源分配缺乏公平性的问题,该文提出一种优先级权重速率控制(priority weighted rate control,PWRC)算法。该算法在MAC层上采用加权队列模型,利用业务的优先级及权重值共同控制业务的降速因子,达到在保证高优先级业务服务质量(quality of ser-vice,QoS)的同时提升信道资源利用的公平性。仿真结果表明:与现有MAC协议相比,使用该方法时相同优先级业务的公平性指数接近理论上限1,对信道资源的利用率最高可提升40%;同时,可降低相同优先级业务平均端到端延时及延时抖动。
关键词 航空Ad hoc网络,媒体接入控制(MAC),优先级,权重值,权重公平队列(WFQ),服务质量(QoS)
Abstract:Current media access control (MAC) protocols for aeronautical Ad hoc networks can not achieve fair channel resource utilization. This paper describes a priority weighted rate control (PWRC) algorithm, which uses the fair queuing model in the MAC layer. The traffic speed reduction factor is determined by its priority and weight. The PWRC guarantees the quality of service (QoS) while the channel resource is fairly utilized. Simulations indicate that the traffic fairness index with the same priority is closer to the upper band 1 than with existing MAC protocols. The channel resource utilization is improved about 40% and the end-to-end delay and jitter are reduced.
Key wordsaeronautical Ad hoc networksmedia access control(MAC)priorityweightweight fair queue(WFQ)quality of service(QoS)
收稿日期: 2016-11-11 出版日期: 2017-03-25
ZTFLH:TP311.51
通讯作者:晏坚,副研究员,E-mail:yanjian_ee@tsinghua.edu.cnE-mail: yanjian_ee@tsinghua.edu.cn
引用本文:
高晓琳, 晏坚, 陆建华. 一种航空Ad hoc网络优先级权重速率控制算法[J]. 清华大学学报(自然科学版), 2017, 57(3): 293-298.
GAO Xiaolin, YAN Jian, LU Jianhua. Priority weighted rate control algorithm in aeronautical Ad hoc networks. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 293-298.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.012 http://jst.tsinghuajournals.com/CN/Y2017/V57/I3/293


图表:
图1 调度接入模型
表1 仿真参数表
图2 优先级p4业务FI
图3 优先级p4业务总吞吐量
图4 基于优先级退避参数的吞吐量
图5 PWRC算法的吞吐量
表3 平均延时、延时抖动


参考文献:
[1] Karras K, Kyritsis T, Amirfeiz M, et al. Aeronautical mobile ad hoc networks[C]//Proceedings of the 14th European Wireless Conference. New York, NY, USA:IEEE Computer Society, 2008:1-6.
[2] Wang Y, Zhao Y J. Fundamental issues in systematic design of airborne networks for aviation[C]//Proceedings of IEEE Aerospace Conference. New York, NY, USA:IEEE Computer Society, 2006:1-8.
[3] IEEE. IEEE Std.802.11e-2005.Part II:Wireless LAN Medium Access Control(MAC) and Physical Layer (PHY) Specifications Amendment 8:Medium Access Control(MAC) Quality of Service Enhancements[S]. New York:IEEE Computer Society, 2005.
[4] Banchs A, Perez X. Distributed weighted fair queuing in 802. 11 wireless LAN[C]//Proceedings of IEEE International Conference on Communications. New York, NY, USA:IEEE Computer Society, 2002:3121-3127.
[5] Vaidya N, Dugar A, Gupta S, et al. Distributed fair scheduling in a wireless LAN[J]. IEEE Computer Society, 2005, 4(6):616-629.
[6] He D J, Shen C Q. Simulation study of IEEE 802. 11e EDCF[C]//Proceedings of the 57th IEEE Semiannual. New York, NY, USA:IEEE Computer Society, 2003:685-689.
[7] XIAO Yang. IEEE 802. 11e:QoS provisioning at the MAC layer[J]. IEEE Personal Communications, 2004, 11(3):72-79.
[8] Stephen M C. Statistical priority-based multiple access and method. United States patent US 7680077 B1. 2010-03-16.
[9] ZHANG Hongmei, PENG Shasha, ZHAO Yuting, et al. An improved algorithm of slotted-ALOHA based on multichannel statistics[C]//Proceedings of the 5th International Symposium on Computational Intelligence and Design. New York, NY, USA:IEEE Computer Society, 2012:37-40.
[10] 王叶群, 杨峰, 黄国策, 等. 一种航空自组网中带差分服务的跳频MAC协议建模[J]. 软件学报, 2013, 24(9):2214-2225. WANG Yequn, YANG Feng, HUANG Guoce, et al. Media access control protocol with differential service in aeronautical frequency-hopping Ad hoc networks[J]. Journal of Software, 2013, 24(9):2214-2225.(in Chinese)
[11] 高晓琳, 晏坚, 陆建华. 一种支持QoS的航空自组织网络无反馈MAC协议建模[J]. 北京航空航天大学学报, 2016, 42(6):1169-1175.GAO Xiaolin, YAN Jian, LU Jianhua. A collision model providing QoS guarantee for the feedback-free MAC in aeronautical Ad hoc networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6):1169-1175.(in Chinese)
[12] 张伟龙, 吕娜, 杜思深.应用于航空Ad hoc网络的高负载优先级均衡MAC协议[J]. 电讯技术, 2014, 54(5):656-661. ZHANG Weilong, LÜ Na, DU Sishen. A balancing priority MAC protocol under high load for aviation Ad hoc network[J]. Telecommunication Engineering, 2014, 54(5):656-661. (in Chinese)
[13] Bensaou B, Wang Yu, Ko C C. Fair medium access in 802.11 based wireless Ad hoc networks[C]//Proceedings of 2000 First Annual Workshop on Mobile and Ad hoc Networking and Computing. New York, NY, USA:IEEE Computer Society, 2000:99-106.
[14] Golestani S J. A self-clocked fair queueing scheme for broadband applications[C]//Proceedings of Networking for Global Communications. New York, NY, USA:IEEE Computer Society, 1994(2):636-646.
[15] Jain R, Babic G, Nagendra B, et al. Fairness, Call Establishment Latency and Other Performance Metric[R]. Tech Rep ATM_Forum/96-1773, ATM Forum Document, 1996.


相关文章:
[1]刘雯静, 郭静波. 面向自动需求响应的高速窄带电力线通信应用层[J]. 清华大学学报(自然科学版), 2016, 56(3): 299-305.

相关话题/航空 控制 网络 北京 媒体