删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

低能耗的无线传感器网络隐私数据融合方法

清华大学 辅仁网/2017-07-07

低能耗的无线传感器网络隐私数据融合方法
苘大鹏1, 王臣业2, 杨武1, 王巍1, 玄世昌1, 靳小鹏1
1. 哈尔滨工程大学 信息安全研究中心, 哈尔滨 150001;
2. 哈尔滨工程大学 国家大学科技园, 哈尔滨 150001
Energy-efficient cluster-based privacy data aggregation for wireless sensor networks
MAN Dapeng1, WANG Chenye2, YANG Wu1, WANG Wei1, XUAN Shichang1, JIN Xiaopeng1
1. Information Security Research Center, Harbin Engineering University, Harbin 150001, China;
2. National Science Park of Harbin Engineering University, Harbin 150001, China

摘要:

输出: BibTeX | EndNote (RIS)
摘要针对已有无线传感器网络隐私保护数据融合方法普遍存在节点计算量和通信量较大的问题,基于原有的分簇隐私数据融合方法(CPDA),提出一种低能耗的数据融合隐私保护方法(E-CPDA)。在每轮融合过程中由簇头随机选取协作节点,通过协作节点配合簇头进行数据的隐私保护融合,以有效降低节点的计算量和通信量。仿真结果表明:相比于CPDA方法,E-CPDA方法在保证数据隐私性的前提下,在计算量、通信量和融合精度上都有较大的提升。
关键词 无线传感器网络,隐私保护,数据融合
Abstract:Current privacy-preserving data aggregation methods in wireless sensor networks often have large computational and communication costs. This paper presents an energy-efficient cluster-based privacy data aggregation (E-CPDA) mechanism based on the cluster-based privacy data aggregation (CPDA) method. In each round of aggregation, the cluster head chooses a node as a collaborative node for the aggregation, which reduces the computational and communication costs between the nodes in one cluster. Simulations show that E-CPDA has less communication and computational costs with good privacy-preserving performance and higher accuracy than CPDA.
Key wordswireless sensor network (WSN)privacy preservationdata aggregation
收稿日期: 2016-06-29 出版日期: 2017-02-21
ZTFLH:TP393
通讯作者:王臣业,研究员,E-mail:wangchenye@hrbeu.edu.cnE-mail: wangchenye@hrbeu.edu.cn
引用本文:
苘大鹏, 王臣业, 杨武, 王巍, 玄世昌, 靳小鹏. 低能耗的无线传感器网络隐私数据融合方法[J]. 清华大学学报(自然科学版), 2017, 57(2): 213-219.
MAN Dapeng, WANG Chenye, YANG Wu, WANG Wei, XUAN Shichang, JIN Xiaopeng. Energy-efficient cluster-based privacy data aggregation for wireless sensor networks. Journal of Tsinghua University(Science and Technology), 2017, 57(2): 213-219.
链接本文:
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.017 http://jst.tsinghuajournals.com/CN/Y2017/V57/I2/213


图表:
表1 簇内融合的符号说明
图1 簇内节点广播种子值
图2 簇头节点广播选定节点的种子值
图3 信息交互过程
图4 协作节点向簇头发送运算结果
图5 EGCPDA 与CPDA 的隐私度比较(pc=1/5)
图6pc值不同时EGCPDA 的隐私度对比
图7 簇规模分布(节点连接度数d=12)
图8 EGCPDA 与CPDA的簇内通信量对比(pc=1/5)
图9pc=1/3时EGCPDA 与CPDA 的总通信量对比
图10pc=1/5时EGCPDA 与CPDA 的总通信量对比
图11 EGCPDA与CPDA剩余能量比
图12pc=1/5时EGCPDA与CPDA精确度对比


参考文献:
[1] LI Na, ZHANG Nan, Das S K, et al. Privacy-preserving in wireless sensor networks:A state-of-the-art survey[J]. Ad Hoc Networks, 2009, 7(8):1501-1514.
[2] Ozdemir S, XIAO Yang. Secure data aggregation in wireless sensor networks:A comprehensive overview[J]. Computer Networks, 2009, 53(12):2022-2037.
[3] 范永健, 陈红. 无线传感器网络数据隐私保护技术[J]. 计算机学报, 2012, 35(6):1131-1146.FAN Yongjian, CHEN Hong. Data privacy preservation in wireless sensor networks[J]. Chinese Journal of Computers, 2012, 35(6):1131-1146. (in Chinese)
[4] HE Wenbo, LIU Xue, Nguyen H, et al. PDA:Privacy-preserving data aggregation in wireless sensor networks[C]//Proc 26th IEEE International Conference on Computer Communications. Anchorage, AK, USA:IEEE Press, 2007:2045-2053.
[5] Bista R, Jo K J. A new approach to secure aggregation of private data in wireless sensor networks[C]//Proc 8th IEEE International Conference on Dependable Autonomic and Secure Computing. Chengdu, China:IEEE Press, 2009:394-399.
[6] WANG Fushun, WANG Bin, SUN Xiaohua. Data merging method by protecting energy in wireless sensor networks[J]. Journal of Networks, 2014, 9(6):1558-1564.
[7] LI Li, QIN Qin, LI Hua, et al. Data fusion algorithm of privacy protection based on QoS and multilayers hierarchically[J]. International Journal of Distributed Sensor Networks, 2013, 2013, 926038.
[8] LI Hongjuan, LIN Kai, LI Keqiu. Energy-efficient and high-accuracy secure data aggregation in wireless sensor networks[J]. Computer Communication, 2010, 34(4):591-597.
[9] 杨庚, 王安琪, 陈正宇, 等. 一种低能耗的数据融合隐私保护算法[J]. 计算机学报, 2011, 34(5):792-800.YANG Geng, WANG Anqi, CHEN Zhengyu, et al. An energy-saving privacy-preserving data aggregation algorithm[J]. Chinese Journal of Computers, 2011, 34(5):792-800. (in Chinese)
[10] 杨庚, 李森, 陈正宇, 等. 传感器网络中面向隐私保护的高精度数据融合算法[J]. 计算机学报, 2013, 36(1):189-200.YANG Geng, LI Sen, CHEN Zhengyu, et al. High-accuracy and privacy-preserving oriented data aggregation algorithm in sensor networks[J]. Chinese Journal of Computers, 2013, 36(1):189-200. (in Chinese)
[11] YAO Jianbo, WEN Guangjun. Protecting classification privacy data aggregation in wireless sensor networks[C]//Proc 4th International Conference on Wireless Communication, Networking and Mobile Computing, WiCOM. Dalian, China:IEEE Press, 2008:1-5.
[12] GUO Hongzhi. A modified scheme for privacy-preserving data aggregation in WSNs[C]//Proc 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet). Yichang, China:IEEE Press, 2012:790-794.
[13] Ukil A, Sen J. Secure multiparty privacy preserving data aggregation by modular arithmetic[C]//Proc 1st International Conference on Parallel, Distributed, and Grid Computing. Solan, India:IEEE Press, 2010:329-334.
[14] Goldreich O. Secure Multi-Party Computation, Working Draft[Z/OL]. Version 1.4 (2002-10-27)[2015-10-23]. http://www.wisdom.weizmann.ac.il/~oded/PSX/prot.pdf.
[15] Eschenauer L, Gligor V D. A key-management scheme for distributed sensor networks[C]//Proc 9th ACM Conference on Computer and Communications Security. Washington DC, USA:ACM Press, 2002:41-47.


相关文章:
[1]周彩秋, 杨余旺, 王永建. 无线传感器网络节点行为度量方案[J]. 清华大学学报(自然科学版), 2017, 57(1): 39-43.
[2]付俊松, 刘云. 基于信誉系统及数据噪声点检测技术的无线传感器网络节点安全模型[J]. 清华大学学报(自然科学版), 2017, 57(1): 24-27.
[3]宁博, 裴晓霞, 李玉居, 裴新宇. LBS大数据中基于固定网格划分四叉树索引的查询验证[J]. 清华大学学报(自然科学版), 2016, 56(7): 785-792.
[4]蔡劼, 顾明. 基于IEEE 802.15.4的星形拓扑无线传感器网络性能分析[J]. 清华大学学报(自然科学版), 2015, 55(5): 565-571.
[5]朱涵钰, 吴联仁, 吕廷杰. 社交网络用户隐私量化研究: 建模与实证分析[J]. 清华大学学报(自然科学版), 2014, 54(3): 402-406.

相关话题/数据 网络 传感器 通信 计算机