|
文章导读 |
|
摘要大气逆辐射对地表能量平衡及蒸发等方面有重要影响。为准确计算大气逆辐射,该文基于6种常用的晴空大气发射率计算公式并根据日太阳辐射率(太阳辐射的实际值与理论值的比值)对云的影响进行修正,建立大气逆辐射的参数化方法; 并将6种方法与位于华北平原的位山生态水文实验站与栾城农业生态系统实验站的实测数据进行对比。结果表明: Marshunova公式具有最好的模拟精度,确定系数(R2)高于0.97, 平均偏移误差(MBE)小于4 W/m2, 均方根误差(RMSE)小于11 W/m2, 尤其是日辐射计算值与观测值的线性回归方程的斜率在1.00±0.05范围内,截距小于15 W/m2, 能精确模拟气候变化下的大气逆辐射。
|
关键词 :大气发射率,华北平原,Marshunova公式 |
Abstract:The downward long-wave radiation has an important impact on the surface energy balance and surface evaporation. This paper compares six methods for estimating the downward long-wave radiation. These formulae modify the atmospheric emissivity for clear skies for cloudy skies according to the daily solar radiation ratio (defined as the ratio of the measured incoming solar radiation to the solar radiation received with clear skies). The estimates from these methods are compared with measurements from the Weishan Echo-Hydrology Experimental Station in Shandong Province and the Luancheng Agro-Ecosystem Experimental Station in Hebei Province in the North China Plain. The results show that the Marshunova equation gives the best estimates with a correlation coefficient (R2) larger than 0.97, a mean bias error (MBE) less than 4 W/m2, and a root mean square error (RMSE) less than 11 W/m2. The correlation slope is 1.00±0.05 and the intercept is less than 15 W/m2. Thus, this equation can accurately estimate the downward long-wave radiation for climate change models.
|
Key words:atmospheric emissivityNorth China PlainMarshunova equation |
收稿日期: 2013-06-05 出版日期: 2015-09-03 |
|
基金资助:国家自然科学基金资助项目 (51209117,51379098,51109222);北京高等学校青年英才计划项目 (YETP0080) |
[1] | Goody R M. Atmospheric Radiation-1. Theoretical Basis [M]. Oxford, UK: the Clarendon Press, 1964. |
[2] | Lhomme J P, Vacher J J, Rocheteau A. Estimating downward long-wave radiation on the Andean Altiplano[J]. Agricultural and Forest Meteorology, 2007, 145(3-4): 139-148. |
[3] | Marshunova M S. Principal Characteristics of the Radiation Balance of the Underlying Surface[M]. Santa Monica, USA: Rand Corporation, 1966. |
[4] | Swinbank W C. Long-wave radiation from cliear syies[J]. Quarterly Journa of the Royal Meteorological Society, 1963, 89(381): 339-348. |
[5] | Idos S B, Jachson R D. Thermal radiation from the atmosphere[J]. Journal of Geophysical Research-Oceans and Atmospheres, 1969, 74(23): 5397-5403. |
[6] | Brutsaert W. On a derivable formula for long-wave radiation from clear skies[J]. Water Resources Research, 1975, 11(5): 742-744. |
[7] | Satterlund D R. Improved equation for estimating long-wave-radiation from the atmosphere[J]. Water Resources Research, 1979, 15(6): 1649-1650. |
[8] | Konzelmann T, Vandewal R, Greuell W, et al.Parameterization of global and longwave incoming radiation for the Greenland ince-sheet[J]. Global and Planetary Change, 1994, 9(1-2): 143-164. |
[9] | Deardorff J W. Efficient prediction of ground surface- temperature and moisture, with inclusion of a layer of vegetation[J]. Journal of Geophysical Research-Oceans, 1978, 83(C4): 1889-1903. |
[10] | Crawford T M, Duchon C E. An improved parameterization for estimating effective atmospheric emissivity for use in calculating daytime downwelling longwave radiation[J]. Journal of Applied Meteorology, 1999, 38(4): 474-480. |
[11] | Allen R G, Pereira L S, Raes D, et al.Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements[M]. Rome, Italy: Food and Agriculture Organization, 1998. |
[12] | 雷慧闽, 杨大文, 沈彦俊, 等. 黄河灌区水热通量的观测与分析[J]. 清华大学学报:自然科学版, 2007, 47(6): 801-804. LEI Huimin, YANG Dawen, SHEN Yanjun, et al.Energy and water fluxes in the Yellow River irrigation region[J]. Journal of Tsinghua University: Science and Technology, 2007, 47(6): 801-804. (in Chinese) |