删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

喷水法成型纤维网增强水泥基板材抗弯性能

清华大学 辅仁网/2017-07-07

喷水法成型纤维网增强水泥基板材抗弯性能
王振波,张君(),罗孙一鸣
Flexural performance of textile reinforced cementitious composite with sprinkling water hardening technique
Zhenbo WANG,Jun ZHANG(),Yiming LUOSUN
Key Laboratory of Civil Engineering Safty and Durability of the Ministry of Education of China, Department of Civil Engineering, Tsinghua University, Beijing 100084, China

摘要:
HTML
输出: BibTeX | EndNote (RIS) 背景资料
文章导读
摘要该文采用喷水硬化工艺制造了玻璃纤维编织网增强水泥基板材,试验研究了配网率和纤维编织网定位方式对其抗弯性能的影响。结果表明: 玻璃纤维编织网可显著改善喷水成型水泥基板材的抗弯性能。随着配网率的增加,纤维网增强水泥基板材的抗弯强度和极限挠度明显提高。配网率为1.0%时,磁铁定位双层纤维网增强水泥基板材抗弯强度达10.64 MPa, 是无增强纤维网板材的3倍; 极限挠度达6.74 mm, 是无增强纤维网板材的8倍。该工艺可解决需要快速搭建又无预拌条件工程的施工问题。

关键词 纤维网增强水泥,喷水硬化,抗弯性能
Abstract:Textile reinforced cementitious composite board was produced using a sprinkling water hardening technique. Test measured the effect of the textile ratio and textile location on the flexural performance of the board. The results show that the flexural behavior of the board made with the sprinkling water hardening technique was greatly improved by adding the glass fibers. As the textile ratio increases, the flexural strength and ultimate deflection of the textile glass reinforced cementitious board are greatly increased. The flexural strength of boards with 1.0% textile ratio can reach 10.64 MPa, which is 3 times higher than the boards without textiles, and the ultimate deflection is 6.74 mm, which is 8 times higher than that of the boards without textiles. The sprinkling water hardening technique may solve construction problems where there is no way to directly mix cement with water.

Key wordstextile reinforced cementitious compositesprinkling water hardeningflexural performance
收稿日期: 2012-12-28 出版日期: 2015-09-03
ZTFLH: 
基金资助:国家自然科学基金资助项目(51278278)
引用本文:
王振波, 张君, 罗孙一鸣. 喷水法成型纤维网增强水泥基板材抗弯性能[J]. 清华大学学报(自然科学版), 2014, 54(5): 551-555.
Zhenbo WANG, Jun ZHANG, Yiming LUOSUN. Flexural performance of textile reinforced cementitious composite with sprinkling water hardening technique. Journal of Tsinghua University(Science and Technology), 2014, 54(5): 551-555.
链接本文:
http://jst.tsinghuajournals.com/CN/ http://jst.tsinghuajournals.com/CN/Y2014/V54/I5/551


图表:
抗拉强度 弹性模量 极限应变 理论面积
MPa GPa % mm2
1 950 104 1.87 1.25


玻璃纤维编织网性能
玻璃纤维编织网结构示意图
编号 配网率ρ/% 纤维网定位方式
1 0
2 粘附底面
3 0.50 螺帽垫起
4 磁铁定位
5
6
1.00 粘附底面
磁铁定位


抗弯试件列表
双层纤维编织网结构示意图
试件喷水成型示意图
单层纤维网增强板材弯曲应力挠度曲线
开裂强度 开裂挠度 极限强度 极限挠度
MPa mm MPa mm
无纤维网 3.66 0.84 3.66 0.84
纤维网
粘附底面
3.12 0.79 3.43 5.19
纤维网
螺帽垫起
2.63 0.87 3.90 6.12
纤维网
磁铁定位
3.01 0.70 4.65 5.78


单层纤维网增强试块弯曲试验数据
板材开裂形态
双层纤维网增强板材的弯曲应力挠度曲线
双层纤维网增强板材开裂形态
开裂强度 开裂挠度 开裂强度 极限挠度
MPa mm MPa mm
纤维网
粘附底面
3.30 1.37 6.59 5.84
纤维网
磁铁定位
3.24 0.76 10.64 6.74


双层纤维网增强板材抗弯试验数据
开裂强度、抗弯强度随配网率的变化
开裂挠度、极限挠度随配网率的变化


参考文献:
[1] 王燕谋, 苏慕珍, 张量. 第三系列水泥——硫(铁)铝酸盐水泥系列介绍[J]. 混凝土, 1994, 16(01): 21-25. WANG Yanmou, SU Muzhen, ZHANG Liang. Introduction to the third series of cement-Sulphate(ferro) aluminium cement[J]. Concrete, 1994, 16(01): 21-25. (in Chinese)
[2] 罗孙一鸣, 张君, 郭自力. 快硬砂浆与混凝土早期力学和收缩性能[J]. 混凝土世界, 2012, 39(09): 60-64. LUOSUN Yiming, ZHANG Jun, GUO Zili. Mechanical and shrinkage performance of rapid hardening mortar and concrete in early age[J]. China Concrete, 2012, 39(09): 60-64. (in Chinese)
[3] 唐仕英, 古仁红, 李捷, 等. 早高强砂浆和混凝土的力学性能及抗爆实验[J]. 解放军理工大学学报(自然科学版), 2007, 8(05): 474-477. TANG Shiying, GU Renhong, LI Jie, et al.Mechanical performance and blast-resistant test of earlyhigh-strength mortar and concrete[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2007, 8(05): 474-477.(in Chinese)
[4] 刘庆涛, 岑国平, 蔡良才, 等. 新型道面抢修混凝土试验研究[J]. 新型建筑材料, 2012, 19(01): 21-23. LIU Qingtao, CEN Guoping, CAI Liangcai, et al.Experimental study on the new type cement concrete used in repair the pavement rapidly[J]. New Building Materials, 2012, 19(01): 21-23. (in Chinese)
[5] 何唐镛, 路庆忠, 王晓利. 快硬水泥卷锚杆及其在不良岩层加固中的应用[J]. 西安矿业学院学报, 1987, 7(01): 27-36. HE Tangyong, LU Qingzhong, WANG Xiaoli. Application of rapid hardening cement roll bolt in strengthening of fractured surrounding rock[J]. Journal of Xi’an Mining Institute, 1987, 7(01): 27-36.(in Chinese)
[6] 王燕谋, 苏慕珍, 张量. 硫铝酸盐水泥 [M]. 北京: 北京工业大学出版社, 1999. WANG Yanmou,SU Muzhen, ZHANG Liang. Sulphate aluminium cement [M]. Beijing: Beijing University of Technology Press, 1999. (in Chinese)
[7] ZHANG Jun, LENG Bing. Analysis of shrinkage-induced stresses in concrete pavements[J]. Magazine of Concrete Research, 2004, 56(10): 585-595.
[8] ZHANG Jun, GONG Chengxu, GUO Zili, et al.Mechanical performance of low shrinkage engineered cementitious composite in tension and compression[J]. Journal of Composite Materials, 2009, 43(22): 2571-2585.
[9] Hegger J, Will N, Bruckermann O, et al.Load-bearing behaviour and simulation of textile reinforced concrete[J]. Materials and Structures, 2006, 39(8): 765-776.
[10] 徐世烺, 阎轶群. 低配网率纤维编织网增强混凝土轴拉力学性能[J]. 复合材料学报, 2011, 28(05): 206-213. XU Shilang, YAN Yiqun. Mechanical properties of textile reinforced concrete plate at low textile ratios[J]. Acta Materiae Compositae Sinica, 2011, 28(05): 206-213. (in Chinese)
[11] Brückner A, Ortlepp R, Curbach M. Textile reinforced concrete for strengthening in bending and shear[J]. Materials and Structures, 2006, 39(8): 741-748.
[12] 蔡正咏, 李世绮. 路面水泥混凝土抗折强度的经验关[J]. 中国公路学报, 1992, 5(01): 14-20. CAI Zhengyong, LI Shiqi. Theexperimental correlation between flexural tensile strength and flexural compressive strength of cement concrete pavement[J]. China Journal of Highway and Transport, 1992, 5(01): 14-20.(in Chinese)


相关文章:
No related articles found!

相关话题/混凝土 数据 北京 结构 工艺