删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

清华大学丘成桐数学科学研究中心导师教师师资介绍简介-曾惠慧

本站小编 Free考研考试/2020-04-16


曾惠慧教授
电话:**
办公室:静斋319

邮箱:hhzeng@tsinghua.edu.cn
个人主页:






研究领域 偏微分方程
教育背景 1999-2003?? 学士?? 四川大学
2004-2009?? 博士?? 香港中文大学
工作经历 2019 至今 教授 清华大学丘成桐数学科学中心
2015-2019 副教授 清华大学丘成桐数学科学中心及数学科学系
2012-2015 副教授 清华大学丘成桐数学科学中心
2009-2012 博士后 美国乔治城大学
荣誉与奖励 2018年 国家自然科学基金优秀青年基金
2015年 清华大学学术新人奖
2010年 香港数学学会最佳论文奖



发表论文 [1] T. Luo and H. Zeng, On the free surface motion of highly subsonic heat-conductinginviscid flows, arXiv:1709.06925.
[2] H. Zeng, Global Resolution of the Physical Vacuum Singularity for3-D Isentropic Inviscid Flows with Damping in Spherically Symmetric Motions, Arch. Ration. Mech. Anal. 226 (2017), 33-82.
[3] T. Luo and H. Zeng, Global existence of smooth solutions andconvergence to Barenblatt solutions for the physical vacuum free boundaryproblem of compressible Euler equations with damping, Comm. Pure Appl. Math. 69 (2016), 1354-1396.
[4] T. Luo, Z. Xin and H. Zeng, Nonlinear asymptotic stability of theLane-Emden solutions for the viscous gaseous star problem with degeneratedensity dependent viscosities, Comm.Math. Phy. 347 (2016), 657-702.
[5] T. Luo, Z. Xin and H. Zeng, On nonlinear asymptotic stability ofthe Lane-Emden solutions for the viscous gaseous star problem, Adv. Math. 291 (2016), 90-182.
[6] B. Yang and H. Zeng, Zero relaxation limit to rarefaction wavesfor general 2*2 hyperbolic systems with relaxation, Comm. Math. Sci. 14 (2016), 443-462.
[7] Y. Ou and H. Zeng, Global strong solutions to the vacuum freeboundary problem for compressible Navier-Stokes equations with degenerateviscosity and gravity force, J.Differential Equations 259 (2015), 6803-6829.
[8] H. Zeng, Global smooth solutions of the vacuum free boundaryproblem for compressible isentropic Navier-Stokes equations, Nonlinearity 28 (2015), 331-345.
[9] T. Luo, Z. Xin and H. Zeng, Well-posedness for the motion ofphysical vacuum of the three-dimensional compressible Euler equations with orwithout self-gravitation, Arch. Ration.Mech. Anal. 213 (2014), 763-831.
[10] J. Miller and H. Zeng, Range limits in spatially explicit modelsof quantitative traits, J. Math. Biol.,68 (2014), 207-234.
[11] H. Zeng, Stability of planar traveling waves for bistablereaction-diffusion equations in multiple dimensions, Appl. Anal. 93 (2014), 653-664.
[12] H. Zeng, Multidimensional stability of traveling fronts inmonostable reaction-diffusion equations with complex perturbations, Sci. China Math. 57 (2014), 353-366.
[13] J. Miller and H. Zeng, Multidimensional stability of planartraveling waves for an integrodifference model, Discrete Contin. Dyn. Syst. Ser. B 18 (2013), 741-751.
[14] J. Miller and H. Zeng, Stability of travelling waves for systemsof nonlinear integral recursions in spatial population biology, Discrete Contin. Dyn. Syst. Ser. B 16(2011), 895-925.
[15] H. Zeng, A class of initial value problems for 2*2 hyperbolicsystems with relaxation, J. DifferentialEquations 251 (2011), 1254-1275.
[16] Z. Xin and H. Zeng, Pointwise stability of contact discontinuityfor viscous conservation laws with general perturbation, Comm. Partial Differential Equations 35 (2010), 1326-1354.
[17] Z. Xin and H. Zeng, Convergence to rarefaction waves forBoltzmann equation and Compressible Navier-Stokes equations, J. Differential Equations 249 (2010),827-871.
[18] H. Zeng, Stability of a superposition ofshock waves with contact discontinuities for systems of viscous conservationlaws, J. Differential Equations 246(2009), 2081-2102.



相关话题/清华大学 数学