删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

清华大学丘成桐数学科学研究中心导师教师师资介绍简介-邱宇

本站小编 Free考研考试/2020-04-16


邱宇副教授
电话:
办公室:静斋303

邮箱:q-y@tsinghua.edu.cn
个人主页:https://ubw-q.github.io/






研究领域 代数表示论
教育背景 2008-2011 博士 巴斯大学 (Uni. of Bath, UK)
2004-2008 学士 北京大学
工作经历 2018至今 ? ? ? 清华大学丘成桐数学科学中心 ?? 副教授
2016~2018 ? 香港中文大学 ? ? ? ? ? ? ? ? ? ? ? ? ?? 研究助理教授
2013~2016 ? 挪威科技大学 ? ? ? ? ? ? ? ? ? ? ? ? ?? 博士后
2012 ? ? ? ? ? ?? 加拿大主教大学 ? ? ? ? ? ? ? ? ? ? ?? 博士后
荣誉与奖励 2016 国际代数表示论会议(ICRA)奖
2013-2017挪威自然科学基金
2017-2020香港自然研究基金
2016-2018香港中文大学基金



发表论文 1. On the focus order of planar polynomial differential equations,with J. Yang,
J. Diff. Equations, 246 (2009), pp 3361-3379.
2. Ext-quivers of hearts of A-type and the orientation ofassociahedron,
J. Algebra, 393 (2013), pp 60-70.(arXiv:1202.6325)
3. Exchange graphs and Ext quivers, with A. King,
Adv. Math. 285 (2015), pp 1106–1154. (arXiv:1109.2924).
4. Stability conditions and quantum dilogarithm identities for Dynkinquivers,
Adv. Math. 269 (2015), pp 220-264. (arXiv:1111.1010)
5. Tagged mapping class group: Auslander-Reiten translations, with T.Brustle,
Math. Zeit. 279 (2015), pp 1103-1120. (arXiv:1212.0007)
6. C-sortable words as green mutation sequences,
Proc. Lond. Math. Soc. 111 (2015), pp 1052-1070. ( arXiv:1205.0034)
7. Decorated marked surfaces: Spherical twists versus braid twists,
Math. Ann. 365 (2016), pp 595-633.(arXiv:1407.0806).
8. Cluster categories for marked surfaces:punctured case, with Y. Zhou,
Compos. Math. 153 (2017), pp1779-1819. (arXiv:1311.0010)
9. Decorated marked surfaces (Part B): Topological realizations,
Math. Z. 288 (2018) pp 39–53.
10. Contractible stability spaces and faithful braid group actions, with J. Woolf,
Geom. & Toptol. 22 (2018)3701–3760. (arXiv:1407.5986)
11. Decorated marked surfaces II: Intersection numbers and dimensionsof Homs, with Y.Zhou,
Tans. Amer. Math. Soc., 372(2019) 635–660. (arXiv:1411.40033)
12. The braid group for a quiver with superpotential,
Sci. China. Math. 62 (2019) 1241–1256. (arXiv:1712.09585)
13. Topological structure of spaces of stability conditions and top. Fukayatype categories
Proceeding of 1st Annual Meeting of ICCM. (arXiv:1806.00010)
14. Decorated Marked Surfaces:Calabi-Yau categories and related topics, Proceeding of the 51st Symposium on Ring Theory and Rep. Theory, 129–134, Symp. Ring Theory Represent.Theory Organ. Comm., Shizuoka, 2019. (arXiv:1812.00008)
15. Decorated marked surfaces III: The derived category of a decoratedmarked surface, with A. Buan and Y. Zhou, Int. Math. Res. Notice, to appear.
arXiv:1804.00094
Preprint
16. Frobenius morphisms and stability conditions, with W.Chang,
arXiv:1210.0243
17. Stability conditions and A2 quivers, with T. Bridgeland and T. Sutherland,
arXiv:1406.2566
18. Finite presentations for spherical/braid twist groups fromdecorated marked surfaces, with Y. Zhou,
arXiv:1703.10053
19. Cluster exchange groupoids and framed quadratic differentials,with A. King,
arXiv:1805.00030
20. Global dimension function, Gepner equations and q-stabilityconditions.
arXiv:1807.00010
21. q-Stability conditions on Calabi-Yau-X categories and twistedperiods. with A. Ikeda,
arXiv:1807.00469
22. q-Stability conditions via q-quadratic differentials forCalabi-Yau-X categories. with A. Ikeda,
arXiv:1812.00010



相关话题/清华大学 数学