删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

清华大学丘成桐数学科学研究中心导师教师师资介绍简介-陈志杰

本站小编 Free考研考试/2020-04-16


陈志杰副教授
电话:+86-
办公室:静斋219

邮箱:zjchen2016@tsinghua.edu.cn
个人主页:






研究领域 变分法、椭圆偏微分方程和Painleve方程
教育背景 2004-2008 学士 清华大学
2008-2013 博士清华大学
工作经历 2013年于清华大学取得博士学位
2018年获2017清华大学学术新人奖
现任清华大学丘成桐数学科学中心副教授
荣誉与奖励 2018年 ??2017清华大学学术新人奖
2018年 ??2018 ICCM最佳论文奖?



发表论文 [1]?Chen Z., Kuo, T-J.?and Lin C-S., Simple zero property of some holomorphic functions on the moduli space of tori, 18 pp, Science China Mathematics, accepted for publication,?a special issue to celebrate Prof. Lo Yang’s 80 birthday
[2]?Chen Z., Kuo, T-J.?and Lin C-S., The geometry of generalized Lame equation,?I,?33?pp, J.?Math.?Pures Appl.,?published online.
[3]?Chen Z.?and Lin C-S., Sharp nonexistence results for curvature equations with four singular sources on?rectangular tori, 28 pp, Amer. J. Math., accepted for publication
[4]?Chen Z.?and Lin C-S., Critical points of the classical Eisenstein series of weight two, 39?pp, J. Differ. Geom., accepted for publication
[5]?Chen Z., Kuo T-J.?and?Lin C-S., Non-existence of solutions for a mean field equation on flat tori at critical?parameter 16pi, Comm. Anal. Geom., accepted for publication
[6]?Chen Z. and Lin C-S., A new type of non-topological bubbling solutions?to a competitive Chern-Simons model, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze?(5),?accepted for publication
[7]?Chen Z. and Lin C-S., Self-dual radial non-topological solutions to a competitive Chern-Simons model, Adv. Math., 331(2018), 484-541.
[8]?Chen Z. and Lin C-S., On algebraic multiplicity of (anti)periodic eigenvalues of Hill’s equation, Proc. Amer. Math. Soc., 146(2018), 3039-3047.
[9]?Chen Z., Kuo T-J.,?Lin C-S. and Takemura K., Real-root property of the spectral polynomial of the Treibich-Verdier?potential and related problems, J. Differ. Equ.264(2018), 5408-5431.
[10]?Chen Z., Kuo T-J.,?Lin C-S. and Takemura K.,, On reducible monodromy representations of some generalized Lame equation, Math. Z, 288(2018), 679-688.
[11]?Chen Z., Kuo T-J., Lin C-S. and Wang C-L., Green function, Painleve VI equation and Eisenstein series of weight one,?J.?Differ. Geom., 108(2018), 185-241.
[12]?Chen Z., Kuo T-J.?and?Lin C-S., Existence and non-existence of solutions of the mean field equations on flat tori, Proc. Amer. Math. Soc., 145(2017), 3989-3996.
[13]?Chen Z., Kuo T-J.?and?Lin C-S.,?Unitary monodromy implies the smoothness along the real axis for some?Painleve VI equation, I, J. Geom. Phys., 116(2017), 52-63.
[14]?Chen Z., Kuo T-J.?and?Lin C-S., Hamiltonian system for the elliptic form of Painleve VI equation,?J.?Math.?Pures Appl.,?106(2016), 546-581.
[15]?Chen Z., Lin C-S. and Zou W.,?Infinitely many sign-changing and semi-nodal solutions for a nonlinear Schrodinger system, Annali della Scuola Normale Superiore di Pisa, Classe di Scienze?(5),?Vol. XV (2016), 859-897.
[16]?Chen Z. and Lin C-S., Asymptotic behavior of least energy solutions for a critical elliptic system, Inter. Math. Res. Not., 2015, 11045-11082.
[17]?Chen Z. and Lin C-S., Removable singularity of positive solutions for a critical elliptic system with isolated singularity, Math. Ann., 363(2015),?501-523.?
[18]?Chen Z. and Zou W., Existence and symmetry of positive ground states for a doubly critical Schrodinger system, Trans. Amer. Math. Soc.,?367(2015),?3599-3646.
[19]?Chen Z. and Zou W., Standing waves for a coupled system of nonlinear Schrodinger equations, Ann. Mat. Pura Appl., 194(2015),?183-220.
[20]?Chen Z. and Zou W., Positive least energy solutions and phase separation for coupled Schrodinger equations with critical exponent: Higher dimensional case, Calc. Var. PDEs., 52(2015),?423-467.
[21]?Chen Z., Lin C-S. and Zou W., Sign-changing solutions and phase separation for an elliptic system with critical exponent, Comm. Partial Differ. Equ., 39(2014), 1827-1859.
[22]?Chen Z. and Zou W., A remark on doubly critical elliptic systems, Calc. Var. PDEs., 50(2014), 939-965.
[23]?Chen Z. and Zou W., Standing waves for linearly coupled Schrodinger equations with critical exponent. Ann.?l. Henri Poincare-Anal. Non Lineaire, 31(2014), 429-447.
[24]?Chen Z., Lin C-S. and Zou W., Monotonicity and nonexistence results to cooperative systems in the half space, J. Func. Anal., 266(2014), 1088-1105.
[25]?Chen Z. and Zou W., On linearly coupled Schrodinger systems. Proc. Amer. Math. Soc., 142(2014), 323-333.
[26]?Zhang J., Chen Z. and Zou W., Standing waves for nonlinear Schrodinger equations involving critical growth, J. Lond. Math. Soc., 90(2014), 827-844.
[27]?Chen Z. and Zou W., Standing waves for coupled nonlinear Schrodinger equations with decaying potentials, J. Math. Phys., 54(2013), 111505.
[28]?Chen Z., Lin C-S. and Zou W., Multiple sign-changing and semi-nodal solutions for coupled Schrodinger equations, J. Differ. Equ., 255(2013), 4289-4311.
[29]?Chen Z. and Zou W., An optimal constant for the existence of least energy solutions of a coupled Schrodinger system. Calc. Var. PDEs., 48(2013), 695-711.
[30]?Chen Z. and Zou W., Positive least energy solutions and phase separation for coupled Schrodinger equations with critical exponent, Arch.?Ration.?Mech. Anal., 205(2012), 515-551.
[31]?Chen Z. and Zou W., Ground states for a system of Schrodinger equations with critical exponent. J. Funct. Anal., 262(2012), 3091-3107.
[32]?Chen Z. and Zou W., On an elliptic problem with critical exponent and Hardy potential.?J. Differ. Equ., 252(2012), 969-987.
[33]?Chen Z. and Zou W., On the Brezis-Nirenberg problem in a ball. Differ. Integ. Equ., 25(2012), 527-542.
[34]?Chen Z., Shioji N. and Zou W., Ground state and multiple solutions for a critical exponent problem. Nonl. Differ. Equ. Appl., 19(2012), 253-277.
[35]?Chen Z. and Zou W., A note on the Ambrosetti-Rabinowitz condition for an elliptic system, Appl.?Math.?Lett., 25(2012), 1931-1935.
[36]?Chen Z. and Zou W., On coupled?systems of?Schrodinger equations. Adv. Differ. Equ., 16(2011), 775-800.
?



相关话题/清华大学 数学