删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Investigation of current collapse and recovery time due to deep level defect traps in <i>β<

本站小编 Free考研考试/2022-01-01




1.
Introduction




There has recently been considerable interest in monoclinic β-phase of gallium oxide (β-Ga2O3) inspired by its excellent material characteristics—large energy bandgap EG ~ 4.9 eV[1], high breakdown electric field EBr up to 8 MV/cm[2], and high electron velocity vsat ~ 1.5 × 107 cm/s[3]. Wide variety of intentional n-type dopants—Si, Ge, and Sn as shallow donors facilitate to achieve electron concentrations ~ 1 × 1020 cm–3[4], although p-type doping in Ga2O3 shows inconsistent findings[5, 6]. Additionally, with the help of low-cost melt growth techniques, such as Czochralski[7], and floating zone[8], large size Ga2O3 bulk substrate can be grown and thus offers cost competitiveness over other wideband semiconductors—GaN and SiC. The availability of low cost and large size β-Ga2O3 bulk crystalline substrates further enables different epitaxial technologies, such as molecular beam epitaxy (MBE), and halide vapor phase epitaxy (HVPE) to grow Ga2O3 with low crystal defects on native substrate. To compensate unintentional Silicon (Si) incorporation during growth of Ga2O3, deep level acceptors such as Mg, and Fe are used to achieve semi insulating bulk crystals[2], and controls substrate leakage. Out of the promising n-type dopants, Si, Ge, and Sn; Ge shows preferred choice for β-Ga2O3 devices[4].



Several experimental studies on defects throughout the entire bandgap of β-Ga2O3 (010) layers have used deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) techniques[912]. Three distinct trap states at wC – 0.1 eV, 0.2 eV, and 0.98 eV in Ge-doped (010) β-Ga2O3 grown using plasma assisted MBE[9], EC – 0.62 eV, 0.82 eV, 1 eV in unintentionally doped (UID) (010) β-Ga2O3 using edge-defined film-fed growth (EFG)[10], EC – 0.55 eV, 0.74 eV, and 1.04 eV[11] in β-Ga2O3 crystal grown using Czochralski method, and two deep level traps at EC – 0.78 eV (due to Fe impurities) and EC – 0.75 eV (due to intrinsic defect)[12] in upper part of the bandgap with concentrations varying from 1014 to 1016 cm?3 have been demonstrated.



With the distinct trap level defects reported so far, device performance can be easily questioned unless different trap sources and their individual effects on specific output parameters are fully established because device degradation may be reversible or permanent in nature. Significant progress in Ga2O3 based electronic devices such as Schottky diodes[13], metal semiconductor FET (MESFET)[2], metal oxide semiconductor FET (MOSFET)[14, 15], modulation doped FET (MODFET)[16], and HEMT[17] have been reported with good DC and RF performance, mainly due to Ga2O3 excellent material properties. Traps in the device can affect thermal characteristics, including on resistance (Ron) and threshold voltage (VTh), a shift of 0.78 V in VTh was measured due to two distinct trap levels at 0.7 eV, and 0.77 eV in β-Ga2O3 MESFETs on Fe-doped β-Ga2O3 substrate[18]. Dynamic dispersion in drain characteristics led current lag due to trap at EC ? 0.75 eV was demonstrated in back-gated Ga2O3 based MOSFET[19].



Potential application of β-Ga2O3 based devices beg the question of whether the device degradation due to various traps EC – 0.98, 0.82, 0.78, 0.75 eV[9, 10, 12] is temporary or permanent in nature? In this work, we focus on traps originated from Fe-doped β-Ga2O3 substrate, and Ge-doped epitaxial layer on Sn-doped β-Ga2O3 substrate to model the reversible current collapse phenomenon along with measurement of current recovery time to its steady state value.




2.
Device structure and simulation framework




Fig. 1 shows device structure of AlN/β-Ga2O3 HEMT which is analysed in this report. The sequence of materials comprise of 25 nm AlN barrier layer on 2 μm β-Ga2O3 substrate. Gate material of Au/Ni with gate length, LG of 0.25 μm and Schottky barrier height of 0.8 eV is set by fixing the work function, ?M of the gate metal of 2.2 eV, electron affinity of the AlN barrier is set as 1.4 eV[20] in material properties. Source/drain electrodes are considered to be perfectly Ohmic. The gate–source (LGS), gate–drain (LGD), and source–drain (LSD) spacing are 1.2, 2.95, and 4.4 μm, respectively. Silicon nitride (Si3N4) insulator of 25 nm is used as surface passivation to suppress current collapse as per experimental device[2].






onerror="this.onerror=null;this.src='http://www.jos.ac.cn/fileBDTXB/journal/article/jos/2020/10/PIC/20020006-1.jpg'"
class="figure_img" id="Figure1"/>



Download



Larger image


PowerPoint slide






Figure1.
(Color online) Schematic cross sectional view of the analysed device structure.




Using electron and hole effective masses of β-Ga2O3[21], total conduction band (NC) and valence band (NV) density of states of 3.6 × 1018 and 2.86 × 1020 cm?3, respectively, were calculated, and other parameters were considered from Ref. [17].



For undoped AlN layer default material parameters as mentioned in Ref. [22] are considered except electron affinity (χ = 1.4 eV). Due to low in-plane lattice mismatch between AlN/β-Ga2O3 heterojunction, spontaneous and piezoelectric polarization built in model[22] is activated for AlN material region. A large conduction band offset (CBO), ΔEC = 1.75 eV[20] offers polarization induced sheet charge density σ = 5.617 × 1013 C/cm2[23] at the heterointerface due to sole polarization of AlN layer. In absence of p-type carriers, β-Ga2O3 based devices are unipolar, so negative differential mobility model as given by Eq. (1) is chosen for β-Ga2O3 material region and default values of parameters[22] are replaced by mobility model[3]. The low-field electron mobility of 140 cm2/(V·s) as reported in Ref. [3] is in good agreement with Hall measurements electron mobility of 162 cm2/(V·s)[17].








$${mu _{
m{n}}}left( E
ight) = {
m{}}dfrac{{{mu _{{
m{n}}0}} + {
m{}}dfrac{{v_{
m{sa}{{
m{t}}_{
m{n}}}}}}{E}{
m{}}{{left( {dfrac{E}{{{
m{ECRITN}}}}}
ight)}^{{
m{gamman}}}}}}{{1 + {
m{}}{{left( {dfrac{E}{{{
m{ECRITN}}}}}
ight)}^{{
m{gamman}}}}}}.$$



Based on previous published reports[912], among the four electron trap levels—E1, E2, E3, and E4; the most prominent is E2 and especially dominant in ($ {bar 2} $01) sample, and the source of this trap level is intentional dopant Fe[12]. So to quantify the effect of Fe dopants led current collapse of drain current, the β-Ga2O3 substrate is doped with iron (Fe) as acceptor traps with energy level EC –0.78 eV, and 0.75 eV[12]. The Fe doping in the substrate has a Gaussian profile with peak concentration of 1018 cm–3 at y = 1.0 μm, and gradually drops to 1016 cm–3 near the surface. In order to analyse the effect of traps, generated by commonly used n-type dopants, Ge in β-Ga2O3 epitaxial layer, three trap levels at EC ?0.1 eV, ?0.2 eV, ?0.98 eV are uniformly doped in 50 nm buffer layer. In this case, the substrate is doped with n-type dopant (Sn) concentration of 1018 cm–3 to minimize the Fe effect in epitaxial layer as demonstrated in Ref. [9]. The state EC –0.98 eV is also confirmed by Zhang et al.[10] as EC –1.0 eV by DLTS in Ni/β-Ga2O3 Schottky diode on unintentional doped (UID) (010) substrate by edge-defined film-fed growth (EFG). All the trap levels are analysed in regard of current collapse phenomenon and are summarized in Table 1 with other characteristics. Only deep level traps with concentration ≥ 1015 cm–3 are considered.






ReferenceTrap energy
levels (eV)
Capture cross section
(10?14 cm–2)
Trap sourceTrap concentration
(1015 cm–3)
Current collapse/
recovery time
[12]EC – 0.780.7Fe-doped substrate (${overline 2}$01)10Moderate/ few seconds
EC – 0.755Fe-doped substrate (${overline 2}$01)10Moderate/ few minutes
[9]EC – 0.980.1? 9Ge-doped PAMBE on (010) substrate1.6Mild/ ~ 1 h
[10]EC – 0.821UID bulk EFG wafer (010)36Severe/ ~ 10 min





Table1.
Deep level traps reported in β-Ga2O3 substrate and epitaxial layer, energy level, capture cross section and trap concentration. Fe and Ge enabled current collapse and drain current recovery time to pre-stress condition.



Table options
-->


Download as CSV





ReferenceTrap energy
levels (eV)
Capture cross section
(10?14 cm–2)
Trap sourceTrap concentration
(1015 cm–3)
Current collapse/
recovery time
[12]EC – 0.780.7Fe-doped substrate (01)10Moderate/ few seconds
EC – 0.755Fe-doped substrate (01)10Moderate/ few minutes
[9]EC – 0.980.1? 9Ge-doped PAMBE on (010) substrate1.6Mild/ ~ 1 h
[10]EC – 0.821UID bulk EFG wafer (010)36Severe/ ~ 10 min






3.
Results and discussions




The proposed device is analysed under three different conditions—gate stress, drain stress, and gate–drain stress. In all three bias conditions, device is biased in low stress and high stress state for 0.1 to 1 ms with respective DC bias at the gate and drain terminals. During initial bias condition, the device is simulated for output drain current under DC bias at gate and drain terminal. After applying a DC bias of VGS = 0 V and VDS = 5 V, this initial bias condition is maintained for 1 ms in dynamic mode. Then, the device is pulsed into high stress state, ?25 V on the gate (in gate stress condition); 25 V on the drain terminal (in drain stress); and ?25 to 25 V on the gate and drain terminals respectively for another 1 ms, as shown in Fig. 2. Then, the device is returned to its original bias condition. Since we are analysing the recoverable current collapse phenomenon which is not permanent in nature[24], in post-stress condition traps should gradually return to steady state occupancy state. To quantify the recovery time to steady state, bias condition is analysed for a longer time in the order of 105 s in post stress condition. Fig. 3 shows current collapse phenomenon resulting of stress bias, as shown in Fig. 2. The drain current spikes momentarily to its maximum value corresponding to VGS = 0 V and VDS = 25 V and collapses at 2 ms. The trapping of electrons in deep level defects causes this undesirable effect and degrades the device performance.






onerror="this.onerror=null;this.src='http://www.jos.ac.cn/fileBDTXB/journal/article/jos/2020/10/PIC/20020006-2.jpg'"
class="figure_img" id="Figure2"/>



Download



Larger image


PowerPoint slide






Figure2.
(Color online) Pre-stress and post-stress bias voltages at gate and drain terminals.






onerror="this.onerror=null;this.src='http://www.jos.ac.cn/fileBDTXB/journal/article/jos/2020/10/PIC/20020006-3.jpg'"
class="figure_img" id="Figure3"/>



Download



Larger image


PowerPoint slide






Figure3.
(Color online) Pre-stress and post-stress drain current. Inset: current collapse.




To analyse the effect of these deep level traps under gate-stress condition, the drain bias remains at fixed bias of 5 V; the device is driven into pinch-off (high stress at gate –25 V for 1 ms) followed by steady state bias. The resulting drain current collapse and recovery time is shown in Fig. 4. It is evident that current degrades momentarily and almost full current recovery happens at time t = 2 ms.






onerror="this.onerror=null;this.src='http://www.jos.ac.cn/fileBDTXB/journal/article/jos/2020/10/PIC/20020006-4.jpg'"
class="figure_img" id="Figure4"/>



Download



Larger image


PowerPoint slide






Figure4.
(Color online) Trapping and de-trapping of defect trap under gate stress.




Similar steps are performed to simulate the device under drain stress with appropriate drain and gate bias and the results are shown in Fig. 5. Due to the low concentration (1014 cm?3) of deep level traps at EC ? 0.1 eV, ? 0.2 eV in Ge-doped epitaxial layer there is no current collapse phenomenon observed. In gate and drain stress bias conditions, both terminals are put in high stress for 1 ms with ? 25 V at gate and 25 V at drain terminal. The results are shown in Fig. 6. Current collapse is evident mainly due to traps at EC –0.82 eV with recovery time of almost 10 min. The trap level at EC – 0.98 eV demonstrated in Ge-doped epitaxial layer contributes negligibly in current collapse, but steady state drain current restores after a time elapse of 1 h. The other two trap levels EC – 0.75 eV, 0.78 eV show significant current collapse and recovery time of few seconds to few minutes are quantified respectively, the later one having large capture cross section of 10?14 cm?2.






onerror="this.onerror=null;this.src='http://www.jos.ac.cn/fileBDTXB/journal/article/jos/2020/10/PIC/20020006-5.jpg'"
class="figure_img" id="Figure5"/>



Download



Larger image


PowerPoint slide






Figure5.
(Color online) Drain stress and recovery of current recovery due to de-population of traps.






onerror="this.onerror=null;this.src='http://www.jos.ac.cn/fileBDTXB/journal/article/jos/2020/10/PIC/20020006-6.jpg'"
class="figure_img" id="Figure6"/>



Download



Larger image


PowerPoint slide






Figure6.
(Color online) Current collapse and recovery curve, showing intentional doped Fe causes most of the current collapse and Ge doping caused current collapse takes approximately 2 h to attain steady state value.




The ionized Fe trap occupancy before and after high stress bias condition highlights are shown in Fig. 7. It can be seen that the trap density under the gate and gate source area near the surface mostly affects the current degradation. Ionization trap density is plotted at a depth of 0.5 μm from the surface in the β-Ga2O3 substrate. There is a significant difference in the occupancy of trap along the depth in the substrate and along the horizontal direction towards gate. The gate length of the analysed device, LG of 0.25 μm, and the effect of Fe trap occupancy extends along the depth up to 0.5 μm (two times of gate length), and along source and drain regions. Source, gate, and drain electrodes are shown in upper part of Fig. 7 to correlate device dimension with ionized trap density in the substrate.






onerror="this.onerror=null;this.src='http://www.jos.ac.cn/fileBDTXB/journal/article/jos/2020/10/PIC/20020006-7.jpg'"
class="figure_img" id="Figure7"/>



Download



Larger image


PowerPoint slide






Figure7.
(Color online) Ionised trap density horizontally at a depth of 0.5 μm in the substrate.





4.
Conclusion




The trapping effects led current collapse phenomenon using drain transient characteristics of β-Ga2O3 HEMT is presented. The recovery time for the drain current to return to its steady state value is investigated using Atlas TCAD simulations. The trap level at energy EC – 0.8 eV in Fe-doped β-Ga2O3 substrate plays crucial role in undesirable current collapse phenomenon and the recovery time is about 10 min. In the Ge-doped β-Ga2O3 epitaxial layer, the trap level at EC – 0.98 eV insignificantly degrades the drain current but takes roughly 1 h to restore the original value. This current degradation is reversible event and current returns to its steady state value but only after a finite time varying from few seconds to several minutes depending on the trap characteristics. It is also observed that unintentional interface traps have a negligible effect on current collapse. The report thoroughly establishes that intentional Fe-doping in semi insulating β-Ga2O3 substrate led traps cause current collapse, and on the other side recovery time in current lag in Ge-doped β-Ga2O3 epitaxial layer is approximately 1 h. By measuring the current recovery time, this report effectively distinguishes between temporary and permanent device degradation due to current collapse. The findings of this work may be useful in reliability study of β-Ga2O3 devices.




Acknowledgements




This publication is an outcome of the collaborative R&D work undertaken in the project under the Visvesvaraya PhD Scheme of Ministry of Electronics & Information Technology, Govt. of India, being implemented by Digital India Corporation.



闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閹冣挃闁硅櫕鎹囬垾鏃堝礃椤忎礁浜鹃柨婵嗙凹缁ㄥジ鏌熼惂鍝ョМ闁哄矉缍侀、姗€鎮欓幖顓燁棧闂傚倸娲らˇ鐢稿蓟閵娿儮鏀介柛鈩冪懃椤も偓婵$偑鍊曠换鎺撴叏妞嬪孩顫曢柟鐑橆殔閻掑灚銇勯幒宥堝厡缂佲檧鍋撻梻浣呵归張顒勩€冮崱娑樻闁逞屽墴濮婄粯鎷呴搹鐟扮闁藉啳浜幉鎼佸级閸喗娈婚梺绯曟杹閸嬫挸顪冮妶鍡楀潑闁稿鎸婚妵鍕即閵娿儱绠诲┑鈥冲级閸旀瑩鐛鈧獮鍥ㄦ媴閻熸澘鍘為梻浣告惈椤︻垶鎮ч崟顖氱鐎光偓閸曨偄鍤戦梺纭呮彧闂勫嫰鍩涢幋锔界厱婵犻潧妫楅鈺呮煛閸℃ḿ鎳囬柡宀嬬到铻栭柍褜鍓涢埀顒佺煯閸楀啿鐣峰ú顏勭劦妞ゆ帊闄嶆禍婊堟煙鏉堝墽绋荤痪顓炲缁辨帡骞囬鐔叉嫽闂侀€炲苯澧い鏃€鐗犲畷浼村即閻樻彃鐏婂┑鐐叉閹稿爼鍩€椤戣法顦︽い顐g矒閸┾偓妞ゆ帒瀚粻鏍ㄧ箾閸℃ɑ灏伴柛銈嗗灴閺屾盯濡搁敂閿婵炲瓨绮撶粻鏍蓟濞戔懇鈧箓骞嬪┑鍥╀簮闂備浇銆€閸嬫挸霉閻樺樊鍎愰柣鎾卞劜缁绘盯骞嬮悘娲讳邯椤㈡棃鍩℃导鍗炵秺閹晛鈻庤箛鏂挎缂佺偓鍎抽崥瀣Φ閸曨垰鍗抽柣鎰綑濞咃綁姊虹拠鏌ョ崪濠碘€虫喘閸┾偓妞ゆ帊绶¢崯蹇涙煕閿濆骸娅嶇€规洘鍨剁换婵嬪炊瑜忛悾娲⒑閸愬弶鎯堥柛鐔稿婢规洟宕楅梻瀵哥畾濡炪倖鐗滈崑鐐哄极闁秵鍊垫慨姗嗗厵閸嬨垺鎱ㄦ繝鍌ょ吋鐎规洘甯掗埢搴ㄥ箣閿濆洨宕堕梻鍌欒兌鏋い鎴濇噹铻炴繝闈涙閺嗭箓鏌熺€涙ḿ濡囨俊鎻掔墦閺屾洝绠涙繛鎯т壕闁惧浚鍋掗崥鍛攽閿涘嫬浜奸柛濠冪墵閹兾旈崘顏嗙厯闂佸湱鍎ら崹鐔煎几瀹ュ鐓熸俊顖濆亹鐢盯鏌i幘瀵告噮缂佽鲸鎸婚幏鍛存濞戞矮鎮i梻浣告惈椤戝洭宕伴弽顓炶摕闁挎繂顦粻濠氭偣閾忕懓鍔嬮柣蹇撶墦濮婃椽宕崟顓犱紘闂佸摜濮甸悧鏇㈡偩閻ゎ垬浜归柟鐑樼箖閺呪晠姊虹粙璺ㄧ闁告艾顑夐、娆撳礋椤愮喐鏂€闂佺粯鍔樼亸娆撳箺閻樼數纾兼い鏃囧亹鏍$紓浣规⒒閸犳牕鐣烽崡鐐╂婵☆垳鍘ф慨锔戒繆閻愵亜鈧牜鏁幒妤€绐楁慨姗嗗厳缂傛岸鏌熼柇锕€骞樼紒鐘荤畺閺屾稑鈻庤箛锝喰ㄦ繝鈷€灞藉⒋闁哄矉绻濆畷銊╁级鐠恒劌甯块梻浣筋嚃閸ㄥ崬螞閸愨晙绻嗛柟闂寸鍞悷婊勭矒瀹曨剝銇愰幒鎾嫽婵炶揪绲介幉锟犲疮閻愬绠鹃悹鍥囧懐鏆ら悗瑙勬礃缁矂锝炲┑瀣垫晣闁绘柨鍢叉导搴㈢節閻㈤潧孝闁挎洏鍊濋幃褎绻濋崶銊ヤ簵濠电偞鍨堕敃鈺呮偄閸℃稒鍋i弶鐐村椤掔喖鏌涙惔锛勭闁靛洤瀚板鎾偄閾忓湱鍘滈梻浣告惈閻寰婃ィ鍐ㄧ畾闁哄啫鐗嗛~鍛存煟濮楀棗浜濋柣蹇撴缁绘繂鈻撻崹顔界亪闂佹寧娲忛崐婵嬪灳閿曗偓閻o繝骞嶉鑺ヮ啎闂備礁婀遍崕銈夊垂閻旂厧鍑犻幖娣妽閻撴瑩鎮楅悽鐧荤懓鏆╅柣搴ゎ潐濞叉﹢鎮¢垾鎰佹綎缂備焦岣块悷褰掓煃瑜滈崜鐔煎春閳ь剚銇勯幒鎴濃偓鍛婄濠婂牊鐓犳繛鑼额嚙閻忥繝鏌¢崨鏉跨厫閻庝絻鍋愰埀顒佺⊕宀e潡宕㈤柆宥嗙厽閹兼惌鍨崇粔鐢告煕鐎n亝顥滈悡銈夋煙缂併垹鏋熼柣鎾寸懅閳ь剝顫夊ú鏍洪妶澶婂嚑婵炴垶鐟f禍婊堟煏韫囥儳纾块柍钘夘樀閺屽秹鎸婃径妯恍﹂梺瀹狀嚙闁帮綁鐛崶顒夋晩闁绘挸绨堕弸蹇旂節閻㈤潧啸闁轰焦鎮傚畷鎴濃槈閵忊晜鏅銈嗘尪閸ㄥ綊宕掗妸褎鍠愰柡鍐ㄧ墕缁犳牗绻涘顔荤盎閹喖姊洪崘鍙夋儓闁稿﹤鎲$粋宥呂旈崨顔规嫼闂佸憡绻傜€氼參宕掗妸鈺傜厱闁靛⿵闄勯妵婵嬫煙椤曞棛绡€闁诡喓鍨藉褰掑箛椤斿墽鏆板┑锛勫亼閸婃牠鎮уΔ鍐╁床闁稿瞼鍋涚憴锔炬喐閻楀牆绗氶柣鎾存礃缁绘盯宕卞Δ鍕伃婵炲瓨绮撶粻鏍ь潖婵犳艾纾兼繛鍡樺焾濡差噣姊虹涵鍜佸殝缂佺粯绻堥獮鍐倻閽樺)銊ф喐婢舵劕纾婚柟鐐墯濞尖晠鏌i幘鍐差劉闁绘繃绻堝铏瑰寲閺囩喐婢掗梺绋款儐閹告悂鈥旈崘顔嘉ч柛鈩冾殘閻熴劑姊洪崫銉バi柤瑙勫劤閻滃宕稿Δ鈧粻娑欍亜閹捐泛啸妞ゆ梹娲熷娲捶椤撶姴绗¢柣銏╁灣閸嬬喓鍒掓繝姘殥闁靛牆鍊告禍楣冩偡濞嗗繐顏紒鈧埀顒傜磽閸屾氨孝闁挎洦浜悰顔界節閸ャ劌鈧兘鏌涘┑鍡楃弸闁靛ň鏅滈悡蹇涙煕椤愶絿绠栫€瑰憡绻堥弻锝夋晲婢跺瞼鏆┑顔硷功缁垶骞忛崨顖滅煓婵炲棛鍋撻ˉ鎴︽⒒娴e懙褰掝敄閸涙潙绠犻幖杈剧到瀵煡姊绘担鍛婃儓缂佸绶氬畷銏$鐎n亞锛欓悗鐟板婢瑰寮ㄦ禒瀣厽婵☆垰鎼痪褍顭跨捄鍝勵伃闁哄矉缍侀獮妯虹暦閸モ晩鍞堕梻浣哥枃椤宕归崸妤€绠栨繛鍡樻尰閸ゆ垶銇勯幋锝呭姷婵$偓鎮傚缁樻媴閸涘﹤鏆堝┑顔硷功閹虫挸鐜婚崹顔规瀻闁规儳顕悾鎶芥⒒閸屾瑨鍏岄弸顏嗙磼缂佹ê濮嶇€规洏鍎抽埀顒婄秵閸撴盯鎯岄崱娑欏€甸柨婵嗛娴滄繈鏌涘▎蹇曠闁宠鍨块幃鈺呭箵閹烘挻顔夐梻渚€娼уú锔炬崲閸儱钃熼柣鏃囨妞规娊鏌涢敂璇插箻闁伙箑鐗婄换婵堝枈濡嘲浜剧€规洖娲ら悡鐔兼倵鐟欏嫭纾搁柛鏃€鍨块妴浣糕枎閹惧鍙嗗銈嗙墬閻喗绔熼弴鐔剁箚闁靛牆绻掗崚浼存煕閻曚礁鐏﹂柛鈺傜洴楠炲鏁傞悾灞藉箻濠电姵顔栭崰妤呭礉閺囥垹鐒垫い鎺嶇劍缁€瀣偓娈垮枟閹倸鐣烽幒妤佸€烽悗鐢登归獮鍫ユ⒑閻熸澘鎮戦柣锝庝邯瀹曠銇愰幒鎴犲幒闂佸搫娲㈤崹娲偂閺囥垺鐓冮悷娆忓閸斻倕霉濠婂懎浜惧ǎ鍥э躬閹瑩顢旈崟銊ヤ壕闁哄稁鍋呴弳婊冣攽閻樻彃顏柣顓炴閵嗘帒顫濋敐鍛闁诲氦顫夊ú婊堝极婵犳哎鈧礁螖閸涱厾顦板銈嗗笒閸婃悂鐛崼鐔虹瘈闁汇垽娼ф禒婊勪繆椤愶綆娈橀柟骞垮灲楠炲洭寮堕幐搴ょ发婵犵數鍋涘Λ娆撳礉閹寸偟顩叉繝濠傜墛閻撴盯鏌涢妷锔芥瀯缂併劎鏅槐鎺撳緞濡儤鐏嶅銈冨妸閸庣敻骞冨▎鎾宠摕闁靛鍎遍崣濠囨⒒娴e憡璐¢弸顏堟煥閺囨ê鍔氭い鏇樺劦瀹曠喖顢涘杈╂澑婵$偑鍊栫敮濠囨倿閿曗偓琚欓柛鈩冪⊕閳锋帡鏌涚仦鎹愬闁逞屽墴椤ユ挸鈻庨姀鐙€娼╂い鎴e亹缁变即鎮峰⿰鍕拻闁伙富鍓熷娲焻閻愯尪瀚板褜鍣i弻宥囨喆閸曨偆浼岄梺鎼炲姂缁犳牠骞栬ぐ鎺濇晝闁靛骏绱曟禍鐑芥⒑鐠囧弶鍞夋い顐㈩槸鐓ら煫鍥ㄧ☉閸ㄥ倸霉閻樺樊鍎忛柦鍐枛閺屾盯鍩勯崘鐐吂闂佸憡鑹鹃澶愬蓟濞戙垹鐏崇€规洖娲ㄩ澶愭煟鎼淬垼澹橀柕鍫熸倐瀵鏁愭径瀣簻闂佸憡绺块崕鎶芥偂閸屾稓绡€闁冲皝鍋撻柛鏇炵仛閻eジ姊烘潪鎵窗闁革綇缍侀悰顕€骞掑Δ鈧粻璇参涢悧鍫㈢畺闂佽¥鍊曢埞鎴︽倷瀹割喖娈堕梺鍛婎焼閸ャ劌浠遍梺闈浥堥弲婊堝磻閸岀偞鐓涢柛銉e劚閻忣亪鏌i幘瀵告噰闁哄瞼鍠栭、娑㈠幢濡ゅ嫬顏┑鐐茬墕閻栫厧顫忓ú顏呭仭闁哄瀵уВ鎰攽閻愬弶鈻曢柛娆忓暙椤曪絾绻濆顒€宓嗛梺闈涚箳婵挳鎳撻崹顔规斀閹烘娊宕愰幇鏉跨;闁瑰墽绮悡娑㈡煕閳╁啞缂氶柟鍐叉喘閺岋紕浠﹂悾灞濄倝鏌熸搴♀枅鐎殿喖顭锋俊鐑藉Ψ閵夈儱鎸ゆ繝寰锋澘鈧鎱ㄩ悜钘夌;婵炴垯鍩勯弫鍕熆閼搁潧濮囩紒鐘崇墵閺屽秹宕崟顐f闂佸搫顑呴悧鍡涒€︾捄銊﹀磯濡わ箑鐏濋顓犵磽娴i潧濡搁柛搴ㄦ涧椤繑绻濆顒傦紲濠殿喗锕╅崗姗€宕戦幘鎼Ч閹艰揪绲块悞鍏肩箾閹炬潙鐒归柛瀣尰椤ㄣ儵鎮欏顔解枅闂佽桨鐒﹂幑鍥箖閳哄懎绀冮棅顐幘閺侀箖姊婚崒娆戝妽閻庣瑳鍏犳椽寮介鐐碉紮閻熸粎澧楃敮鎺楁偪閻愵兙浜滈煫鍥ㄦ尵婢ф盯鏌i幘璺烘灈妤犵偞鐗曡彁妞ゆ巻鍋撻柍褜鍏欓崐鏇炵幓閸ф绠涢柣妤€鐗忛崢鐢告⒑閸涘﹦缂氶柛搴㈠灩濞戠敻宕ㄩ娆戠秿婵犵數濮烽弫鎼佸磻閻愬搫鍨傛い鏍仜閸ㄥ倻鎲搁悧鍫濈瑲闁稿﹤娼¢弻娑⑩€﹂幋婵呯按婵炲瓨绮嶇划鎾诲蓟閻斿吋鍊绘俊顖濇娴犳挳姊洪崫鍕靛剭闁稿﹥鐗滈幑銏犫槈閵忕姷顦ч梺缁樻尭妤犳悂锝炲鍥╃=濞达綀娅g敮娑㈡煟閳哄﹤鐏﹂柣娑卞櫍楠炴ḿ鎷犻懠顒夊敽闂備礁鎼崯顐﹀磻閸℃稑鐤悗锝庡枟閻撶喖骞栧ǎ顒€鈧倕岣块幇顓犵闁告瑥顦紓姘舵煙楠炲灝鐏茬€规洖銈告俊鐤槻缂佷緤绠撻弻锝嗘償椤栨粎校闂佸摜濮甸〃濠傤嚕閹绘巻鏀介悗锝庡亞閸樻捇鎮峰⿰鍕煉鐎规洘绮撻幃銏$附婢跺﹥顓块梻浣告啞缁嬫垿鏁冮敃鍌涘仭鐟滅増甯楅悡鍐喐濠婂牆绀堥柣鏂款殠閸ゆ洖鈹戦悩宕囶暡闁稿瀚伴弻锝夊箻閾忣偅宕冲銈忓瘜閸欏啴骞冨畡鎵冲牚闁告劦浜為濠囨⒑鏉炴壆璐伴柛鐘崇墵閸┿儲寰勯幇顒夋綂闂佹寧绋戠€氼剟鐛幇鐗堚拻濞达絽鎲¢崯鐐层€掑顓ф疁鐎规洘婢樿灃闁告侗鍘鹃敍娆撴⒑鐟欏嫬顥嬪褎顨婇幃鈥斥槈閵忊€斥偓鍫曟煟閹伴偊鏉洪柛銈嗙懃閳规垿顢欓悡搴樺亾閸ф钃熼柣鏃傗拡閺佸﹪鏌涘┑鍡楊仱闁稿鎸搁埞鎴﹀幢濞嗘劖顔曢梻浣告贡閸庛倝宕归悢鑲猴綁宕奸悢绋垮伎濠德板€愰崑鎾翠繆椤愶絾鈷掓俊鍙夊姍閺佹捇鏁撻敓锟�闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘辨繝鐢靛Т閸婂綊宕戦妷鈺傜厸閻忕偠顕ф慨鍌溾偓娈垮櫘閸o絽鐣锋總鍛婂亜闁告稑饪撮崬鍫曟⒒閸屾瑨鍏岄弸顏呫亜閹存繃顥㈡鐐村姍瀹曟粏顦查柛銊︾箖閵囧嫰骞樼捄杞版睏濠碘剝褰冮悧濠冪┍婵犲浂鏁嶆繝鍨姇濞堫厼鈹戦悙鍙夊暁闁搞儯鍔夐幏鍝勨攽閻愯泛钄兼い鏇嗗洨宓佹俊銈呮噺閻撶喖鏌i弬鍨骇婵炲懎锕﹂埀顒侇問閸犳牠鈥﹂悜钘夌畺闁靛繈鍊曞婵嗏攽閻樻彃顏懖鏍ㄧ節瀵伴攱婢橀埀顑懎绶ゅù鐘差儏閻ゎ喗銇勯弽顐㈠壉闁轰椒鑳堕埀顒€绠嶉崕閬嵥囨导鏉戠厱闁瑰濮风壕濂告倵閿濆簼绨藉ù鐘灪閵囧嫰骞掔€n亞浼堥梺鍝勭焿缁辨洘绂掗敂鐐珰闁圭粯甯╁ḿ搴ㄦ⒒娴h櫣銆婇柡鍛箞瀹曟垿濡舵径灞界ウ闁诲函缍嗛崰妤呭疾濠靛鐓冪憸婊堝礈濞戞瑧鐝堕柡鍥ュ灩缁€鍌炴煕韫囨洖甯剁€殿喖鐏濋埞鎴︻敊缁涘鐣跺┑鈽嗗亝椤ㄥ﹪鎮伴鈧浠嬵敇閻斿搫骞愰梻浣虹《閸撴繈銆冮崼鐔告珷闁挎棁濮ら崣蹇撯攽閻樺弶鍣烘い蹇曞Х缁辨帡顢欓悾灞惧櫑闂佸疇顕ч柊锝夌嵁閸℃凹妲绘繝銏㈡嚀椤戝顫忕紒妯诲闁告稑锕ラ崰鎰節濞堝灝鏋ら柡浣筋嚙閻e嘲鈹戦崰顔芥瀹曘劑顢橀悪鈧崬褰掓⒒娓氣偓濞佳呮崲閹烘挻鍙忔い鎾跺€i敐澶婇唶闁靛濡囬崢顏堟椤愩垺澶勬繛鍙夌墪閺嗏晜淇婇悙顏勨偓鏍箰閹间礁绠规い鎰剁畱閻撴﹢鏌熸潏楣冩闁稿﹦鍏橀弻娑樷枎韫囷絾鈻撳┑鈽嗗亞閸嬬喓妲愰幘瀛樺闁惧繒鎳撶粭锟犳煟閵忊晛鐏℃い銊ョ墢閸掓帞鈧綆鍠栫粻铏繆閵堝嫮顦︽繛鍫熷姍濮婃椽宕橀崣澶嬪創闂佸摜鍠嶉崡鎶藉极瀹ュ應鍫柛娑卞灣閿涙繈姊虹粙鎸庢拱闁荤啿鏅涢‖濠囨倻閼恒儳鍘遍梺闈浨归崕宕囩矓濞差亝鐓熸繛鎴濆船濞呭秵顨ラ悙鍙夊枠闁诡啫鍥ч唶闁靛繒濮寸粻鐐烘⒒娴g瓔鍤欓柛鎴犳櫕缁辩偤宕卞☉妯硷紱闂佸憡渚楅崢楣冨汲閿曞倹鍊堕柣鎰版涧娴滈箖鏌涘▎蹇曠闁宠鍨块幃鈺呭矗婢跺﹥顏℃俊鐐€曠换鎺撶箾閳ь剟鏌″畝鈧崰鎰八囬悧鍫熷劅闁抽敮鍋撻柡瀣嚇閹鈻撻崹顔界亪濡炪値鍙冮弨杈ㄧ┍婵犲洦鍊荤紒娑橆儐閺呪晠姊洪懡銈呮灈妞わ綇闄勭粩鐔煎即閻愨晜鏂€闁圭儤濞婂畷鎰板箻缂佹ê娈戦梺鍛婃尫缁€浣规叏椤掑嫭鐓冪憸婊堝礈閻斿娼栨繛宸簼閻掑鏌i幇顖氳敿閻庢碍婢橀…鑳檨闁搞劏浜幑銏犫槈閵忊€充簵闁硅壈鎻徊鍧楊敊閹烘挾绡€缁剧増锚婢ф煡鏌熼鐓庘偓鍨嚕椤愶箑绀冩い鏃囧亹閸旓箑顪冮妶鍡楀潑闁稿鎸婚妵鍕即椤忓棛袦閻庤娲滄灙閾绘牕霉閿濆懏鎯堟鐐搭殜濮婃椽鎮烽弶鎸庡€梺浼欑秵娴滎亜鐣峰┑鍡╁悑闁告侗浜濋~宥夋偡濠婂嫭顥堢€殿喖顭烽幃銏ゅ礂閻撳孩鐤呴梻渚€娼ч敍蹇涘川椤栨艾绗掔紓鍌氬€搁崐椋庣矆娓氣偓椤㈡牠宕ㄥ銈呮喘椤㈡盯鎮滈崱妯绘珝濠电娀娼ч崐缁樼仚濡ょ姷鍋戦崹浠嬪蓟閻斿吋鐒介柨鏃囨硶閺佹牠姊洪悜鈺傛珔闂佸府绲介~蹇曠磼濡顎撻梺鍛婄☉閿曘儵宕曢幘鍓佺=濞达絽澹婇崕搴g磼閼镐絻澹橀柣锝囧厴楠炲鏁冮埀顒傜矆鐎n偁浜滈柟鐑樺灥娴滅偞绻涢弶鎴濐伃婵﹥妞介獮鎰償閵忋埄妲梻浣呵归敃銈囩礊婵犲洤绠栭柨鐔哄У閸嬪嫰鏌涜箛姘汗闁告ḿ鏁诲铏规嫚閳ュ磭鈧鏌涘☉鍗炴灍闁哥姵鐗滅槐鎾诲磼濞嗘帩鍞归梺绋款儐閹瑰洭寮诲☉銏犵疀闁稿繐鎽滈弫鏍磼閻愵剙绀冮柛瀣姉濡叉劙骞樼€涙ê顎撻柣鐘冲姦閸ㄥ磭妲愰弶搴撴斀闁绘劖娼欑徊缁樸亜閺囥劌寮柛鈹惧亾濡炪倖甯掗崰姘缚閹邦厾绠鹃柛娆忣槺婢ь亪鏌i敐鍥у幋妞ゃ垺顨婂畷姗€顢旈崘顓炵劵闂傚倸鍊搁崐椋庣矆娓氣偓楠炲鏁嶉崟顒€搴婇梺绋挎湰婢规洟宕戦幘鎰佹僵妞ゆ巻鍋撴俊鑼额嚙閻f繈鏁愰崨顔间淮閻庢鍠楅幐鎶藉箖濞嗘挸鐓涢柛灞剧⊕濠㈡垿姊婚崒娆掑厡缂侇噮鍨堕弫鍐煛閸涱厾锛涢梺鍛婁緱閸犳牠宕归弬妫靛綊鎮℃惔锝嗘喖闂佺ǹ锕ら悥濂稿蓟閿濆绠涙い鏍ㄦ皑閸橆偄顪冮妶鍐ㄥ姎妞わ缚鍗虫俊鐢稿礋椤栵絾鏅濆銈嗗姧缁辨洟寮弽顐ょ=濞达絼绮欓崫娲煙缁嬫鐓兼鐐茬箻瀹曘劎鈧稒蓱閸庮亪姊洪懡銈呮瀾濠㈢懓妫濋、鏇㈡嚃閳哄啰锛濋梺绋挎湰閻燂妇绮婇悧鍫涗簻闁哄洤妫楀ú锕傚磻鐎n喗鐓欓柟顖嗗拑绱為梺鍝勬4闂勫嫮鎹㈠☉姗嗗晠妞ゆ棁宕甸惄搴ㄦ⒑缂佹ê绗掗柣蹇斿哺婵$敻宕熼姘鳖唺閻庡箍鍎遍ˇ浼搭敁閺嶃劎绠鹃悗娑欋缚閻绱掗鑺ュ磳鐎殿喖顭烽幃銏ゅ礂閻撳簶鍋撶紒妯圭箚妞ゆ牗绻冮鐘裁归悩铏稇妞ゎ亜鍟存俊鍫曞川椤栨粎鏆伴梻浣告惈閹冲繒鎹㈤崟顐嬶綁骞囬弶璺唺濠德板€撶粈浣圭閻熼偊娓婚柕鍫濇閳锋帡鏌涘Ο鐘插閸欏繘鏌¢崶銉ョ仾闁抽攱鍨垮濠氬醇閻旇 濮囬梺鐟板悑閸旀瑩骞冨Δ鈧~婵嬵敇閻斿搫鍤掓俊鐐€栧ú鈺冪礊娓氣偓閵嗕礁顫濈捄铏瑰姦濡炪倖甯掔€氼剟寮伴妷鈺傜厓鐟滄粓宕滃璺何﹂柛鏇ㄥ灠缁犳娊鏌熺€涙ḿ绠ュù鐘哄亹缁辨帡鎮欓鈧崝銈嗙箾绾绡€鐎殿喛顕ч埥澶愬閻樼數鏉告俊鐐€栭悧妤€顫濋妸銉愭帡濮€閵堝棌鎷洪梺鍛婄箓鐎氼參鏁嶉弮鍌滅<闁绘ǹ娅曞畷宀€鈧鍠栭…宄邦嚕閹绢喗鍋勫瀣捣閻涱噣姊绘担绋款棌闁稿鎳愰幑銏ゅ磼濞戞瑥寮挎繝銏e煐閸旀牠鍩涢幋锔藉仩婵炴垶宸婚崑鎾诲礂閸涱収妫滃┑鐘垫暩閸嬫盯顢氶鐔稿弿闁圭虎鍣弫鍕煕閳╁啰鈯曢柛瀣€块弻锝夊棘閸喗鍊梺缁樻尰閻熲晛顫忓ú顏嶆晣闁靛ě鍛濠电姭鎷冪仦鑺ョ亾缂備浇椴哥敮锟犲箖椤忓嫧鏋庨煫鍥ㄦ惄娴犲瓨绻涚€涙ḿ鐭嬬紒顔芥崌瀵寮撮悢铏瑰骄濡炪倖鐗楅懝楣冨汲閺囩喍绻嗛柛娆忣槸婵秵鎱ㄦ繝鍛仩闁归濞€閸ㄩ箖鎼归銈勭敖缂傚倸鍊风欢锟犲窗濡ゅ懏鍋¢柍鍝勬噹杩濇繛杈剧悼绾泛危閸喍绻嗘い鏍ㄨ壘濡插鏌eΔ浣稿摵婵﹥妞藉畷銊︾節閸屾凹妫冮梻浣告啞濞叉牠鎮樺杈╃婵°倐鍋撻柍瑙勫灴閹晠宕归锝嗙槑濠电姵顔栭崰姘跺礂濮椻偓婵℃挳宕掑☉姘兼祫闁诲函缍嗘禍鐐哄礉閿曗偓椤啴濡堕崱妤€娼戦梺绋款儐閹搁箖鎯€椤忓棛纾奸柕蹇曞Т缁秹鎮楃憴鍕婵$偘绮欏顐﹀箛閺夊灝鑰块梺褰掑亰娴滅偤鎯勬惔銊︹拻濞撴埃鍋撴繛浣冲懏宕查柛鈩冪☉缁€鍫熺節闂堟稓澧㈤柣顓炴閹鏁愭惔鈩冪亶闂佺粯鎸荤粙鎴︽箒闂佹寧绻傚В銉ㄣ亹閹烘垹鍔﹀銈嗗坊閸嬫挻绻涚涵椋庣瘈闁绘侗鍣e畷姗€顢欓懖鈺婃Ф闁荤喐绮岄懟顖炲煝娴犲鏁傞柛顐ゅ枔閸欏啫鈹戦埥鍡楃仧閻犫偓閿曗偓鍗遍柣鎴炃滄禍婊堟煛閸屾稑顕滈柛鐘成戦幈銊︾節閸屻倗鍚嬮悗瑙勬礃鐢帡锝炲┑瀣垫晞闁芥ê顦竟鏇㈡⒑缂佹ê鐏卞┑顔哄€濆畷鐢稿礋椤栨稓鍘鹃梺鍛婄缚閸庢煡寮抽埡浼卞綊鎮╅崘鎻掓懙濠殿喖锕︾划顖炲箯閸涙潙宸濆┑鐘插暙閸撶敻姊绘担铏瑰笡妞ゃ劌妫涢崚鎺楀箻瀹曞洦娈惧┑鐘诧工閸熺姴危閸喐鍙忔慨妤€妫楁晶顕€鏌h箛鎿勫伐闁宠鍨块幃娆撳矗婢舵ɑ锛侀梻浣告贡鏋柟鑺ョ矌閸掓帞绱掑Ο鑲╃槇濠殿喗锕╅崢鍏肩椤栫偞鈷戦柟鑲╁仜閸旀潙霉濠婂嫮鐭掗柟顖氬暙鐓ゆい蹇撴噽閸樹粙姊洪棃娑氬闁瑰啿绻樺畷鏉课熺紒妯哄伎婵犵數濮撮幊蹇涱敂閻樼粯鐓曢柡宥冨妿婢х數鈧鍠楅幐鎶藉箖濞嗗緷鍦偓锝庡亜閻濆爼姊婚崒姘偓宄懊归崶褏鏆﹂柣銏⑶归梻顖炴煥閺傚灝鈷斿☉鎾崇Ч閺岀喖骞嗚閿涘秹鏌¢崱顓犵暤闁哄瞼鍠愬ḿ蹇涘礈瑜忛弳鐘绘⒑閸涘﹤濮€闁稿鎹囧缁樼瑹閳ь剙岣胯閸e綊姊洪崨濠勭焼缂佲偓娓氣偓瀵煡顢橀姀鈾€鎷婚梺绋挎湰閻熴劑宕楀畝鈧惀顏堫敇閻愰潧鐓熼悗瑙勬礃缁矂鍩為幋鐐电瘈闁告劏鏅涘▍锟犳⒒閸屾瑦绁版い鏇嗗懏宕查柟閭﹀枟瀹曟煡鎮楅敐搴℃灈缁绢厸鍋撻梻浣筋潐閸庣厧螞閸曨垱瀚呴柣鏂垮悑閻撱儲绻濋棃娑欙紞婵℃彃鎽滅槐鎺楁偐瀹割喚鍚嬮梺璇″枟椤ㄥ懘鍩ユ径濞炬瀻閻庯綆鍓涚粣妤佷繆閻愵亜鈧呮嫻閻旂厧绀夌€广儱娲﹀畷鍙夌箾閹存瑥鐏柡鍛叀閺屾稑鈽夐崡鐐寸亶闂佽鍠楅悷鈺侇潖濞差亜绠伴幖娣灩椤︹晜绻涚€涙ḿ鐭ゅù婊庝簼娣囧﹦鈧稒蓱婵绱掗娑欑妞ゎ偄绉撮埞鎴﹀煡閸℃浠搁梺琛″亾闂侇剙绉甸崐闈涒攽閻樺磭顣查柍閿嬪灴閺屾盯鏁傜拠鎻掔闂佸憡鏌ㄩ鍥╂閹烘梹瀚氶柟缁樺坊閸嬫挾鎲撮崟顓涙敵婵犵數濮村ú銈囩不椤曗偓閺屻倝骞侀幒鎴濆闂佸綊顥撶划顖滄崲濞戞瑦缍囬柛鎾楀啫鐓傞梻浣侯攰濞呮洟鎮烽埡浣烘殾闁绘垹鐡旈弫鍥ㄧ箾閹寸伝鍏肩珶閺囩偐鏀介柣鎰綑閻忥箓鎮介娑辨當闁宠绉电换婵嬪礋閵娿儰澹曢柣鐔哥懃鐎氼厾绮堥埀顒傜磽閸屾氨孝闁挎洏鍊濋幃楣冩倻閼恒儱鈧崵绱掑☉姗嗗剱闁哄拑缍佸铏圭磼濡崵锛涢梺缁樺釜婵″洨妲愰悙鍙傛棃宕ㄩ瑙勫濠电偠鎻徊鍧楁偤閺傞叿缂氶柟閭﹀枓閸嬫挾鎲撮崟顒傤槰闂佹寧娲忛崹浠嬪Υ娴e壊娼╅柟棰佺劍闉嬫繝鐢靛О閸ㄥジ锝炴径濞掓椽鎮㈡搴㈡濠德板€曢幊搴g矆閸岀偞鐓熼柟鐐▕椤庢霉閻撳骸顒㈢紒缁樼箘閸犲﹤螣濞茬粯缍夐梻浣规偠閸斿宕¢幎鐣屽祦闁哄稁鍙庨弫鍐煥閺囨浜剧紓浣哄У閻楃娀寮婚悢琛″亾濞戞鎴﹀磿閺囥垺鐓涢柛鎰╁妿婢ф洜绱掗銏⑿ч柡灞剧洴椤㈡洟濡堕崨顔界槪闂備礁缍婇ˉ鎾跺垝椤栨粍宕叉繛鎴欏灩缁犲鏌℃径瀣仼闁告柧鍗冲铏圭矙濞嗘儳鍓遍梺鍦嚀濞差厼顕g拠宸悑闁割偒鍋呴鍥⒒娴e憡鍟為柟绋款煼閹嫰顢涘杈ㄦ闂佺懓鐡ㄧ缓鎯i崼銉︾厪闊洤艌閸嬫捇鎼归顐㈡倛婵犵绱曢崑鎴﹀磹閺嶎厽鍋嬫俊銈呭暟閻瑩鏌熼悜妯虹亶闁哄绉归弻锝呂熼懖鈺佺闂佺ǹ锕ら悘姘辨崲濞戙垹绠i柣鎰仛閸犳绱撻崒姘偓鐟邦潩閵娧勵潟闁圭儤顨嗛崑鎰版煕閹邦厼绲诲┑顔哄灲濮婂宕惰濡偓闂佸搫琚崝宀勫煘閹达箑骞㈡俊顖滃劋椤忕娀姊绘担鍛婃儓婵☆偅绻冪粋宥夊醇閺囩偠鎽曞┑鐐村灦閿曗晛岣块埡鍌樹簻闁圭儤鏌¢幏鈥趁瑰⿰搴濋偗鐎规洘妞芥俊鐑芥晝閳ь剛娆㈤悙娴嬫斀闁绘劦浜滈悘顕€鏌涢悩宕囧⒌鐎殿喖顭锋俊姝岊槷闁稿鎹囬弫鎰板川椤栨瑧椹崇紓鍌氬€哥粔鎾儗閸屾凹娼栧┑鐘宠壘绾惧吋绻涢崱妯虹仼闁绘稏鍨归埞鎴︽倷閺夊灝鐨熼梺鍛婁緱閸犳牗鎯旀繝鍥ㄢ拺缂侇垱娲栨晶鑼磼鐎n偄鐏撮柟顔惧仱瀹曞綊顢曢悩杈╃泿闂備胶鎳撻幖顐⑽涘Δ浣侯洸濡わ絽鍟埛鎴︽煕濞戞﹩鐒甸柟杈鹃檮閸嬪鏌eΟ鍨毢闁哄棴闄勭换娑㈠幢濡闉嶉梺鎼炲€曠粔褰掑蓟閺囩喓鐝舵い鏍ㄧ閸h姤淇婇幓鎺撳枠婵﹦绮幏鍛村捶椤撶喕寮撮梻浣规偠閸斿繐螞閸曨偆骞撻柤鎰佸灱濡插姊洪悜鈺傤潑闁告瑥鍟~蹇曠磼濡顎撻梺鑽ゅ枛閸嬪﹪宕电€n亖鏀介柣鎰綑缁茶崵绱掔紒妯忣亪鎮鹃悜钘夌疀妞ゆ垼濮ら弬鈧梺璇插嚱缂嶅棙绂嶉悙鐑樺仼婵炲樊浜濋崑鈩冪節婵犲倸鏆為柟鐧哥秮閺岀喖鐛崹顔句患闂佸疇顫夐崹褰掑焵椤掑﹦绉靛ù婊呭仱瀹曟劙鎮欓悜妯轰画濠电姴锕ら崯鎵不閼姐倐鍋撳▓鍨灍婵″弶甯¤棟闁告瑥顦禍婊勩亜韫囨挸顏╅柡鍡到閳规垿鍨惧畷鍥х厽閻庤娲栧畷顒冪亙闂佸憡鍔︽禍婵嬪闯椤栫偞鈷掑ù锝囩摂閸ゆ瑩鎮楀☉鎺撴珚鐎规洘鐟ㄩ妵鎰板箳閹寸姷鍘梻浣告啞閸旓箓宕伴弽顐や笉闁哄稁鍘介悡銉╂煟閺傛寧鎯堢€涙繈鏌涢悜鍡楃仸婵﹥妞藉畷姗€宕f径瀣壍闂備胶枪閿曘倝鈥﹀畡鎵殾闁靛骏绱曢々鐑芥倵閿濆骸浜愰柟閿嬫そ濮婃椽宕ㄦ繝鍕暤闁诲孩鍑归崢濂割敊韫囨挴鏀介悗锝庡亞閸橀亶鏌f惔顖滅У闁稿妫楃叅闁圭虎鍠楅悡鏇㈡煃鐟欏嫬鍔ゅù婊呭亾娣囧﹪鎮欓鍕ㄥ亾閺嵮屽晠濠电姵鑹剧壕濠氭煙閹屽殶缂佲檧鍋撻梻渚€鈧偛鑻晶鎾煛鐏炶姤顥滄い鎾炽偢瀹曘劑顢涘顑洖鈹戦敍鍕杭闁稿﹥鐗滈弫顔界節閸ャ劌娈戦梺鍓插亝濞叉牠鎮块鈧弻锛勪沪鐠囨彃濮曢梺缁樻尰閻熲晠寮诲☉銏犵婵炲棗绻嗛崑鎾诲冀椤愮喎浜炬慨妯煎亾鐎氾拷
相关话题/Investigation current collapse