文献详情
Modeling the Parameter Interactions in Ranking SVM with Low-Rank Approximation
文献类型:期刊
通讯作者:Xu, J (reprint author), Renmin Univ China, Sch Informat, Beijing Key Lab Big Data Management & Anal Method, Beijing, Peoples R China.
期刊名称:IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING影响因子和分区
年:2019
卷:31
期:6
页码:1181-1193
ISSN:1041-4347
关键词:Learning to rank; ranking SVM; parameter interactions; low-rank approximation
所属部门:信息学院
摘要:Ranking SVM, which formalizes the problem of learning a ranking model as that of learning a binary SVM on preference pairs of documents, is a state-of-the-art ranking model in information retrieval. The dual form solution of a linear Ranking SVM model can be written as a linear combination of the preference pairs, i.e., w = Sigma((i,j)) alpha(ij) (x(i) - x(j)), where alpha(ij) denotes the Lagrange parameters associated with each preference pair (i, j). It is observed that there exist obvious int ...More
Ranking SVM, which formalizes the problem of learning a ranking model as that of learning a binary SVM on preference pairs of documents, is a state-of-the-art ranking model in information retrieval. The dual form solution of a linear Ranking SVM model can be written as a linear combination of the preference pairs, i.e., w = Sigma((i,j)) alpha(ij) (x(i) - x(j)), where alpha(ij) denotes the Lagrange parameters associated with each preference pair (i, j). It is observed that there exist obvious interactions among the document pairs because two preference pairs could share a same document as their items, e.g., preference pairs (d(1), d(2)) and (d(1), d(3)) share the document d(1). Thus it is natural to ask if there also exist interactions over the model parameters alpha(ij), which may be leveraged to construct better ranking models. This paper aims to answer the question. We empirically found that there exists a low-rank structure over the rearranged Ranking SVM model parameters alpha(ij), which indicates that the interactions do exist. Based on the discovery, we made modifications on the original Ranking SVM model by explicitly applying low-rank constraints to the Lagrange parameters, achieving two novel algorithms called Factorized Ranking SVM and Regularized Ranking SVM, respectively. Specifically, in Factorized Ranking SVM each parameter alpha(ij) is decomposed as a product of two low-dimensional vectors, i.e., alpha(ij) = < v(i), v(j)>, where vectors v(i) and v(j) correspond to document i and j, respectively; In Regularized Ranking SVM, a nuclear norm is applied to the rearranged parameters matrix for controlling its rank. Experimental results on three LETOR datasets show that both of the proposed methods can outperform state-of-the-art learning to rank models including the conventional Ranking SVM. ...Hide
DOI:10.1109/TKDE.2018.2851257
百度学术:Modeling the Parameter Interactions in Ranking SVM with Low-Rank Approximation
语言:外文
被引频次:1
基金:National Natural Science Foundation of China (NSFC)National Natural Science Foundation of China [61872338, 61773362, 61425016, 61472401, 61722211]; Youth Innovation Promotion Association CAS [20144310, 2016102]
作者其他论文
Multivariate Time Series Imputation with Generative Adversarial Networks.Luo, Yonghong, Cai, Xiangrui, Zhang, Ying, et al. .ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018). 2018, 31.
PSGAN: A Minimax Game for Personalized Search with Limited and Noisy Click Data.Lu, Shuqi, Dou, Zhicheng, Xu, Jun, et al. .PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19). 2019, 555-564.
Name Entity Recognition with Policy-Value Networks.Lao, Yadi, Xu, Jun, Gao, Sheng, et al. .PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19). 2019, 1245-1248.
Teaching Machines to Extract Main Content for Machine Reading Comprehension.Li, Zhaohui, Feng, Yue, Xu, Jun, et al. .THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE. 2019, 9973-9974.
Deep Learning for Matching in Search and Recommendation.Xu, Jun, He, Xiangnan, Li, Hang,.PROCEEDINGS OF THE TWELFTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM'19). 2019, 832-833.
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
Modeling the Parameter Interactions in Ranking SVM with Low-Rank Approximation
本站小编 Free考研/2020-04-17
相关话题/文献 学术
1900~1959年的美国会计学术
文献详情1900~1959年的美国会计学术文献类型:期刊期刊名称:财会月刊年:2019期:9页码:50-54ISSN:1004-0994关键词:经济学;会计理论;预期;收益所属部门:商学院链接地址:http://d.oldg.wanfangdata.com.cn/Periodical_ckyk201 ...中国人民大学科研学术 本站小编 Free考研 2020-04-17CEO学术经历与企业创新
文献详情CEO学术经历与企业创新外文标题:CEO'sacademicexperienceandfirminnovation文献类型:期刊期刊名称:科研管理年:2019卷:40期:2页码:154-163ISSN:1000-2995关键词:学术经历;企业创新;创新精神所属部门:商学院链接地址:http: ...中国人民大学科研学术 本站小编 Free考研 2020-04-17通过集体产权制度改革理解乡村治理:文献评述与研究建议
文献详情通过集体产权制度改革理解乡村治理:文献评述与研究建议外文标题:UnderstandingRuralGovernancebytheReformoftheCollectivePropertyRightsSystem:BasedonaReviewofExistingLiterature文献类型:期 ...中国人民大学科研学术 本站小编 Free考研 2020-04-17土地确权对农民收入的影响:一个文献综述
文献详情土地确权对农民收入的影响:一个文献综述文献类型:期刊期刊名称:现代管理科学年:2019期:3页码:78-80ISSN:1007-368X关键词:土地确权;农民收入;机制分析所属部门:财政金融学院;经济学院链接地址:http://d.oldg.wanfangdata.com.cn/Period ...中国人民大学科研学术 本站小编 Free考研 2020-04-17零工经济的研究视角——基于西方经典文献的述评
文献详情零工经济的研究视角——基于西方经典文献的述评外文标题:DifferentResearchPerspectivesonGigEconomy——AReviewBasedonWesternClassicalLiterature文献类型:期刊期刊名称:中国人力资源开发年:2019卷:36期:1页码: ...中国人民大学科研学术 本站小编 Free考研 2020-04-17学术卡夫卡
文献详情学术卡夫卡文献类型:期刊期刊名称:中国图书评论年:2019期:2页码:92-97ISSN:1002-235X所属部门:文学院链接地址:http://d.oldg.wanfangdata.com.cn/Periodical_zgtspl201902013.aspx摘要:《卡夫卡与卡夫卡学术》, ...中国人民大学科研学术 本站小编 Free考研 2020-04-17华北地区1876-1879年旱灾研究文献综述
文献详情华北地区1876-1879年旱灾研究文献综述外文标题:ResearchLiteratureReviewontheGreatDroughtDisasterinNorthChinaduring1876-1879文献类型:期刊期刊名称:灾害学年:2019卷:34期:1页码:172-180ISSN: ...中国人民大学科研学术 本站小编 Free考研 2020-04-17明代汉译藏传密教文献与北京的藏传佛教——兼论明代北京藏传佛教格局的形成
文献详情明代汉译藏传密教文献与北京的藏传佛教——兼论明代北京藏传佛教格局的形成外文标题:ChineseTranslationofTibetanBuddhistTextsoftheMingDynastyandtheTibetanBuddhisminBeijing文献类型:期刊期刊名称:青海民族研究年: ...中国人民大学科研学术 本站小编 Free考研 2020-04-17建设适应性与学术性新生研讨课
文献详情建设适应性与学术性新生研讨课外文标题:BuildingAdaptiveandAcademicFreshmenSeminar文献类型:期刊期刊名称:教育教学论坛年:2019期:23页码:75-76ISSN:1674-9324关键词:新生研讨课;适应性;学术性链接地址:http://d.oldg ...中国人民大学科研学术 本站小编 Free考研 2020-04-17高管任期文献研究及态势分析
文献详情高管任期文献研究及态势分析文献类型:期刊期刊名称:国际商务财会年:2019期:11页码:87-93ISSN:1673-8594关键词:高管任期;高阶梯队理论;高管团队任期交错;任期异质性链接地址:http://d.oldg.wanfangdata.com.cn/Periodical_dwjm ...中国人民大学科研学术 本站小编 Free考研 2020-04-17