北京建筑大学环境与能源工程学院,城市雨水系统与水环境省部共建教育部重点实验室,中-荷污水处理技术研发中心,北京 100044
Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Storm Water System and Water Environment, Ministry of Education, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
O积累量的增加除了与反硝化过程中各种酶的电子竞争有关,也与葡萄糖相对复杂的代谢过程有关。
-N was used as the electron acceptor, glucose was used as the carbon source, batch experiments were conducted to investigate the denitrification and N
O release in the reactor under different C/N conditions during the denitrification process. The results showed that when the C/N increased along 1.5, 3, 6.5, 10 and 20 with
O conversion rate increased from 4.08% to 41.17%. Increasing C/N could provide more electrons for denitrification and improve the denitrification efficiency. The increase in N
O accumulation was not only related to the electronic competition of various enzymes in the denitrification process, but also related to the complex metabolism process of glucose.
.
-N as electron acceptor at C/N=1.5
-N as electron acceptor at C/N=1.5
-N为电子受体时反应器内氮素和COD的变化
-N as electron acceptor at C/N=3.0
-N为电子受体时反应器内氮素和COD的变化
-N as electron acceptor at C/N=3.0
-N as electron acceptor at C/N=6.5
-N as electron acceptor at C/N=6.5
-N as electron acceptor at C/N=10
-N as electron acceptor at C/N=10
-N as electron acceptor at C/N=120
-N as electron acceptor at C/N=120
-N as electron acceptor
-N as electron acceptor
[1] | 周晨, 潘玉婷, 刘敏, 等. 反硝化过程中氧化亚氮释放机理研究进展[J]. 化工进展, 2017, 36(8): 3074-3084. |
[2] | 王丝可, 于恒, 左剑恶. 温度和基质浓度对厌氧氨氧化工艺中N2O释放的影响[J]. 环境科学, 2020, 41(11): 5082-5088. |
[3] | 王莎. 亚硝酸盐反硝化过程中NO和N2O积累特征及其机理研究[D]. 西安: 长安大学, 2019. |
[4] | STROKAL M, KROEZE C. Nitrous oxide (N2O) emissions from human waste in 1970-2050[J]. Current Opinion in Environmental Sustainability, 2014, 9-10: 108-121. doi: 10.1016/j.cosust.2014.09.008 |
[5] | SCHERSON Y D, WELLS G F, WOO S G, et al. Nitrogen removal with energy recovery through N2O decomposition[J]. Energy & Environmental Science, 2013, 6(1): 241-248. |
[6] | SCHERSON Y D, WOO S G, CRIDDLE C S. Production of nitrous oxide from anaerobic digester centrate and its use as a co-oxidant of biogas to enhance energy recovery[J]. Environmental Science & Technology, 2014, 48(10): 5612-5619. |
[7] | 冯鑫, 赵剑强, 代伟, 等. 亚硝酸盐反硝化聚磷过程中NO和N2O的累积特征[J]. 环境工程, 2019, 37(12): 1-5. |
[8] | 胡国山, 张建美, 蔡惠军. 碳源, C/N和温度对生物反硝化脱氮过程的影响[J]. 科学技术与工程, 2016, 16(14): 74-77. doi: 10.3969/j.issn.1671-1815.2016.14.015 |
[9] | 王丽丽, 赵林, 谭欣, 等. 不同碳源及其碳氮比对反硝化过程的影响[J]. 环境保护科学, 2004, 30(8): 15-18. |
[10] | 章旻. 污水反硝化脱氮的固态有机碳源选择实验研究[D]. 武汉: 武汉理工大学, 2009. |
[11] | 周梦娟, 缪恒锋, 陆震明, 等. 碳源对反硝化细菌的反硝化速率和群落结构的影响[J]. 环境科学研究, 2018, 31(12): 2047-2054. |
[12] | 李南锟, 杜帅, 刘莉, 等. 葡萄糖对硫自养反硝化性能及微生物群落的影响[J]. 环境科学与技术, 2019, 42(12): 14-19. |
[13] | 王淑莹, 委燕, 马斌, 等. 控制污水生物处理过程中N2O的释放[J]. 环境科学与技术, 2014, 37(7): 78-84. |
[14] | WU G X, ZHAI X F, JIANG C A, et al. Effect of ammonium on nitrous oxide emission during denitrification with different electron donors[J]. Journal of Environmental Sciences, 2013, 25(6): 1131-1138. |
[15] | 付昆明, 姜姗, 苏雪莹, 等. 碳氮比对颗粒污泥CANON反应器脱氮性能和N2O释放的冲击影响[J]. 环境科学, 2018, 39(11): 263-269. |
[16] | 国家环境保护局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
[17] | 胡广宁. 反硝化脱氮过程中亚硝酸盐积累影响因素的研究[D]. 济南: 山东建筑大学, 2020. |
[18] | CHERCHI C, ONNIS-HAYDEN A, EL-SHAWABKEH I, et al. Implication of using different carbon sources for denitrification in wastewater treatments[J]. Water Environment Research, 2009, 81(8): 788-799. doi: 10.2175/106143009X12465435982610 |
[19] | 解英丽, 耿大伟, 吕楠. 亚硝酸盐与硝酸盐反硝化对比试验研究[J]. 给水排水, 2009, 35(S2): 213-215. |
[20] | CERVANTES F J, ROSA D A D L, GóMEZ J. Nitrogen removal from wastewaters at low C/N ratios with ammonium and acetate as electron donors[J]. Bioresource Technology, 2001, 79(2): 165-170. doi: 10.1016/S0960-8524(01)00046-3 |
[21] | 吴光学, 李波, 王火青, 等. 碳源对反硝化过程中一氧化二氮释放的影响[J]. 环境科学与技术, 2015, 38(9): 36-41. |
[22] | 翟晓峰, 蒋成爱, 吴光学, 等. 以甲醇为碳源生物反硝化过程释放一氧化二氮的试验研究[J]. 环境科学, 2013, 34(4): 1421-1427. |
[23] | GE S, PENG Y, WANG S, et al. Nitrite accumulation under constant temperature in anoxic denitrification process: The effects of carbon sources and COD/ $ {\rm{NO}}_{\rm{3}}^{\rm{ - }}$ -N[J]. Bioresource Technology, 2012, 114: 137-143. doi: 10.1016/j.biortech.2012.03.016 |
[24] | MA J, YANG Q, WANG S, et al. Effect of free nitrous acid as inhibitors on nitrate reduction by a biological nutrient removal sludge[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 518-523. |
[25] | DING X, ZHAO J, HU B, et al. Mathematical modeling of nitrous oxide (N2O) production in anaerobic/anoxic/oxic processes: Improvements to published N2O models[J]. Chemical Engineering Journal, 2017, 325: 386-395. doi: 10.1016/j.cej.2017.05.082 |
[26] | 马娟, 王丽, 彭永臻, 等. FNA的抑制作用及反硝化过程的交叉影响[J]. 环境科学, 2010, 31(4): 1030-1035. |
[27] | 张兴兴, 赵日祥, 赵剑强. 碳氮比对亚硝酸盐反硝化过程NO与N2O积累的影响研究[J]. 给水排水, 2020, 56(4): 86-91. |
[28] | GABARRO J G P R M. Anoxic phases are the main N2O contributor in partial nitritation reactors treating high nitrogen loads with alternate aeration[J]. Bioresource Technology, 2014, 163: 92-99. doi: 10.1016/j.biortech.2014.04.019 |
[29] | WANG Q, JIANG G, YE L, et al. Heterotrophic denitrification plays an important role in N2O production from nitritation reactors treating anaerobic sludge digestion liquor[J]. Water Research, 2014, 62(1): 202-210. |
[30] | ZHOU Y, PIJUAN M, ZENG R J, et al. Free nitrous acid inhibition on nitrous oxide reduction by adenitrifying-enhanced biological phosphorus removal sludge[J]. Environmental Science & Technology, 2008, 42(22): 8260-8265. |
[31] | GLASS C, SILVERSTEIN J A, OH J. Inhibition of denitrification in activated sludge by nitrite[J]. Water Environment Research, 1997, 69(6): 1086-1093. doi: 10.2175/106143097X125803 |
[32] | 王莎莎, 彭永臻, 巩有奎, 等. 不同电子受体低氧条件下生物反硝化过程中氧化亚氮产量[J]. 水处理技术, 2011, 37(8): 58-60. |
[33] | ALINSAFI A, ADOUANI N, BéLINE F, et al. Nitrite effect on nitrous oxide emission from denitrifying activated sludge[J]. Process Biochemistry, 2008, 43(6): 683-689. doi: 10.1016/j.procbio.2008.02.008 |
[34] | PAN Y, NI B J, BOND P L, et al. Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment[J]. Water Research, 2013, 47(10): 3273-3281. doi: 10.1016/j.watres.2013.02.054 |
[35] | ZHAO W, WANG Y, LIU S, et al. Denitrification activities and N2O production under salt stress with varying COD/N ratios and terminal electron acceptors[J]. Chemical Engineering Journal, 2013, 215-216: 252-260. doi: 10.1016/j.cej.2012.10.084 |
[36] | KISHIDA N, KIM J H, KIMOCHI Y, et al. Effect of C/N ratio on nitrous oxide emission from swine wastewater treatment process[J]. Water Science & Technology, 2004, 49(5/6): 359-365. |
[37] | 魏百惠. 反硝化过程中N2O积累特性及影响因素探究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
[38] | 刘国华, 庞毓敏, 范强, 等. 不同碳源条件下污水生物脱氮过程中N2O的释放规律[J]. 环境保护科学, 2016, 42(1): 90-94. |
[39] | 徐亚同. 不同碳源对生物反硝化的影响[J]. 给水排水技术动态, 1994, 15(2): 28-31. |
[40] | GLASS C, SILVERSTEIN J A. Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation[J]. Water Research, 1998, 32(3): 831-839. doi: 10.1016/S0043-1354(97)00260-1 |
[41] | LU H, CHANDRAN K, STENSEL D. Microbial ecology of denitrification in biological wastewater treatment[J]. Water Research, 2014, 64(1): 237-254. |