董艳春1,,
周术元1
1.军事科学院防化研究院,国民核生化灾害防护国家重点实验室,北京 100191
基金项目: 国家自然科学基金资助项目21701186国家自然科学基金资助项目(21701186)
Thermocatalytic decomposition of a sarin simulating agent by metal oxides supported on γ-Al2O3
GAO Han1,,DONG Yanchun1,,
ZHOU Shuyuan1
1.State Key Laboratory of National Nuclear Biological and Chemical Disaster Protection, Research Institution of Chemical Defense, Academy of Military Science, Beijing 100191, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为了考察负载型金属氧化物催化剂对毒剂的热催化分解性能,以γ-Al2O3为载体,金属氧化物(Mn、Ni、Fe、Co、Cu和Ce)为活性组分,采用等体积浸渍法制备了负载型金属氧化物催化剂,对沙林毒剂模拟剂——甲基膦酸二甲酯(DMMP)进行了热催化分解评价实验,分别研究了不同反应温度、空速条件下热催化分解性能的变化规律。结果表明,在几种负载型金属氧化物催化剂中,CuO/γ-Al2O3表现出了最佳的防护性能。通过调控CuO负载量(1%~20%),发现5% CuO/γ-Al2O3具有较高的分散度和比表面积,热催化分解性能最好。磷物种的沉积造成催化剂比表面积的降低和晶体结构的破坏,是催化剂活性下降的主要原因。
关键词: 甲基膦酸二甲酯/
金属氧化物/
热催化分解/
化学防护
Abstract:In order to investigate the performance of supported metal oxide catalysts on thermocatalytic decomposition of chemical warfare agents, an equivalent volume impregnation method was used to load the active components of metal oxides (including Mn, Ni, Fe, Co, Cu and Ce) on the carrier of γ-Al2O3. The experiments of thermocatalytic decomposition of dimethyl methylphosphonate (DMMP), a sarin simulating agent, were conducted, and the variations of thermocatalytic decomposition performance under different reaction temperatures and space velocities were studied. The results showed that CuO/γ-Al2O3 had the best protection performance among several supported metal oxide catalysts. Through adjusting the CuO loading amount from 1% to 20%, it was found that 5% CuO/γ-Al2O3 exhibited the best thermocatalytic decomposition activity with higher dispersion and specific surface area. The deposition of phosphorus species caused the loss of specific surface area and crystal structure destruction, accounting for the decrease in catalyst activity.
Key words:dimethyl methylphosphonate/
metal oxide/
thermocatalytic decomposition/
chemical protection.
[1] | GUPTA R C. Handbook of Toxicology of Chemical Warfare Agents[M]. London: Academic Press, 2009. |
[2] | MOTAMEDHASHEMI M M Y, EGOLFOPOULOS F, TSOTSIS T. Application of a flow-through catalytic membrane reactor (FTCMR) for the destruction of a chemical warfare simulant[J]. Journal of Membrane Science, 2011, 376(1/2): 119-131. |
[3] | GRAVEN W M, WELLER S W, PETERS D L. Catalytic conversion of an organophosphate vapor over platinum-alumina[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(2): 183-189. |
[4] | MONJI M, CIORA R, LIU P K T, et al. Thermocatalytic decomposition of dimethyl methylphosphonate (DMMP) in a multi-tubular, flow-through catalytic membrane reactor[J]. Journal of Membrane Science, 2015, 482: 42-48. |
[5] | MOTAMEDHASHEMI M M Y, EGOLFOPOULOS F, TSOTSIS T. Flow-through catalytic membrane reactors for the destruction of a chemical warfare simulant: Dynamic performance aspects[J]. Catalysis Today, 2016, 268:130-141. |
[6] | |
[7] | MOTAMEDHASHEMI M M Y, MONJI M, EGOLFOPOULOS F, et al. A hybrid catalytic membrane reactor for destruction of a chemical warfare simulant[J]. Journal of Membrane Science, 2015, 473: 1-7. |
[8] | TZOU T Z, WELLER S W. Catalytic oxidation of dimethyl methylphosphonate[J]. Journal of Catalysis, 1994, 146(2): 370-374. |
[9] | |
[10] | RATLIFF J S, TENNEY S A, HU X, et al. Decomposition of dimethyl methylphosphonate on Pt, Au, and Au-Pt clusters supported on TiO2(110)[J]. Langmuir, 2009, 25(1): 216-225. |
[11] | PANAYOTOV D A, MORRIS J R. Catalytic degradation of a chemical warfare agent simulant: Reaction mechanisms on TiO2-supported Au nanoparticles[J]. Journal of Physical Chemistry C, 2008, 112(19): 7496-7502. |
[12] | HENDERSON M A, WHITE J M. Adsorption and decomposition of dimethyl methylphosphonate on platinum(111)[J]. Journal of the American Chemical Society, 1988, 110(21): 6939-6947. |
[13] | TEMPLETON M K, WEINBERG W H. Adsorption and decomposition of dimethyl methylphosphonate on an aluminum oxide surface[J]. Journal of the American Chemical Society, 1985, 107(1): 97-108. |
[14] | RUSU C N, YATES J T. Adsorption and decomposition of dimethyl methylphosphonate on TiO2[J]. Journal of Physical Chemistry B, 2000, 104(51): 12292-12298. |
[15] | PANAYOTOV D A, MORRIS J R. Thermal decomposition of a chemical warfare agent simulant (DMMP) on TiO2: Adsorbate reactions with lattice oxygen as studied by infrared spectroscopy[J]. Journal of Physical Chemistry C, 2009, 113(35): 15684-15691. |
[16] | MITCHELL M B, SHEINKER V N, MINTZ E A. Adsorption and decomposition of dimethyl methylphosphonate on metal oxides[J]. Journal of Physical Chemistry B, 1997, 101(51): 11192-11203. |
[17] | CHEN D A, RATLIFF J S, HU X, et al. Dimethyl methylphosphonate decomposition on fully oxidized and partially reduced ceria thin films[J]. Surface Science, 2010, 604(5/6): 574-587. |
[18] | TESFAI T M, SHEINKER V N, MITCHELL M B. Decomposition of dimethyl methylphosphonate (DMMP) on alumina-supported iron oxide[J]. Journal of Physical Chemistry B, 1998, 102(38): 7299-7302. |
[19] | ZHOU J, |
[20] | CAO L, SUIB S L, TANG X, et al. Thermocatalytic decomposition of dimethyl methylphosphonate on activated carbon[J]. Journal of Catalysis, 2001, 197(2): 236-243. |
[21] | WAN H, WANG Z, ZHU J, et al. Influence of CO pretreatment on the activities of CuO/gama-Al2O3 catalysts in CO + O2 reaction[J]. Applied Catalysis B: Environmental, 2008, 79(3): 254-261. |
[22] | LUO M, FANG P, HE M, et al. In-situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation[J]. Journal of Molecular Catalysis A: Chemical, 2005, 239(1): 243-248. |
[23] | FANG P, XIE Y, LUO M, et al. In-situ XRD and Raman spectroscopic study on the solid state reaction of CuO/Al2O3 catalysts at high temperature[J]. Acta Physico Chimica Sinica, 2005, 21(1): 102-105. |
[24] | LI Y X, SCHLUP J R, KLABUNDE K J. Fourier-transform infrared photoacoustic-spectroscopy study of the adsorption of organophosphorus compounds on heat-treated magnesium-oxide[J]. Langmuir, 1991, 7(7): 1394-1399. |
[25] | LI Y X, KOPER O, ATTEYA M, et al. Adsorption and decomposition of organophosphorus compounds on nanoscale metal oxide particles. Insitu GC-MS studies of pulsed microreactions over magnesium oxide[J]. Chemistry of Materials, 1992, 4(2): 323-330. |
[26] | |
[27] |
Turn off MathJax -->
点击查看大图
计量
文章访问数:982
HTML全文浏览数:918
PDF下载数:70
施引文献:0
出版历程
刊出日期:2019-06-03
-->
γAl2O3负载金属氧化物热催化分解沙林毒剂模拟剂
高寒1,,董艳春1,,
周术元1
1.军事科学院防化研究院,国民核生化灾害防护国家重点实验室,北京 100191
基金项目: 国家自然科学基金资助项目21701186国家自然科学基金资助项目(21701186)
关键词: 甲基膦酸二甲酯/
金属氧化物/
热催化分解/
化学防护
摘要:为了考察负载型金属氧化物催化剂对毒剂的热催化分解性能,以γ-Al2O3为载体,金属氧化物(Mn、Ni、Fe、Co、Cu和Ce)为活性组分,采用等体积浸渍法制备了负载型金属氧化物催化剂,对沙林毒剂模拟剂——甲基膦酸二甲酯(DMMP)进行了热催化分解评价实验,分别研究了不同反应温度、空速条件下热催化分解性能的变化规律。结果表明,在几种负载型金属氧化物催化剂中,CuO/γ-Al2O3表现出了最佳的防护性能。通过调控CuO负载量(1%~20%),发现5% CuO/γ-Al2O3具有较高的分散度和比表面积,热催化分解性能最好。磷物种的沉积造成催化剂比表面积的降低和晶体结构的破坏,是催化剂活性下降的主要原因。
English Abstract
Thermocatalytic decomposition of a sarin simulating agent by metal oxides supported on γ-Al2O3
GAO Han1,,DONG Yanchun1,,
ZHOU Shuyuan1
1.State Key Laboratory of National Nuclear Biological and Chemical Disaster Protection, Research Institution of Chemical Defense, Academy of Military Science, Beijing 100191, China
Keywords: dimethyl methylphosphonate/
metal oxide/
thermocatalytic decomposition/
chemical protection
Abstract:In order to investigate the performance of supported metal oxide catalysts on thermocatalytic decomposition of chemical warfare agents, an equivalent volume impregnation method was used to load the active components of metal oxides (including Mn, Ni, Fe, Co, Cu and Ce) on the carrier of γ-Al2O3. The experiments of thermocatalytic decomposition of dimethyl methylphosphonate (DMMP), a sarin simulating agent, were conducted, and the variations of thermocatalytic decomposition performance under different reaction temperatures and space velocities were studied. The results showed that CuO/γ-Al2O3 had the best protection performance among several supported metal oxide catalysts. Through adjusting the CuO loading amount from 1% to 20%, it was found that 5% CuO/γ-Al2O3 exhibited the best thermocatalytic decomposition activity with higher dispersion and specific surface area. The deposition of phosphorus species caused the loss of specific surface area and crystal structure destruction, accounting for the decrease in catalyst activity.