删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

γAl2O3负载金属氧化物热催化分解沙林毒剂模拟剂

本站小编 Free考研考试/2021-12-31

高寒1,,
董艳春1,,
周术元1
1.军事科学院防化研究院,国民核生化灾害防护国家重点实验室,北京 100191
基金项目: 国家自然科学基金资助项目21701186国家自然科学基金资助项目(21701186)




Thermocatalytic decomposition of a sarin simulating agent by metal oxides supported on γ-Al2O3

GAO Han1,,
DONG Yanchun1,,
ZHOU Shuyuan1
1.State Key Laboratory of National Nuclear Biological and Chemical Disaster Protection, Research Institution of Chemical Defense, Academy of Military Science, Beijing 100191, China

-->

摘要
HTML全文
(0)(0)
参考文献(27)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为了考察负载型金属氧化物催化剂对毒剂的热催化分解性能,以γ-Al2O3为载体,金属氧化物(Mn、Ni、Fe、Co、Cu和Ce)为活性组分,采用等体积浸渍法制备了负载型金属氧化物催化剂,对沙林毒剂模拟剂——甲基膦酸二甲酯(DMMP)进行了热催化分解评价实验,分别研究了不同反应温度、空速条件下热催化分解性能的变化规律。结果表明,在几种负载型金属氧化物催化剂中,CuO/γ-Al2O3表现出了最佳的防护性能。通过调控CuO负载量(1%~20%),发现5% CuO/γ-Al2O3具有较高的分散度和比表面积,热催化分解性能最好。磷物种的沉积造成催化剂比表面积的降低和晶体结构的破坏,是催化剂活性下降的主要原因。
关键词: 甲基膦酸二甲酯/
金属氧化物/
热催化分解/
化学防护

Abstract:In order to investigate the performance of supported metal oxide catalysts on thermocatalytic decomposition of chemical warfare agents, an equivalent volume impregnation method was used to load the active components of metal oxides (including Mn, Ni, Fe, Co, Cu and Ce) on the carrier of γ-Al2O3. The experiments of thermocatalytic decomposition of dimethyl methylphosphonate (DMMP), a sarin simulating agent, were conducted, and the variations of thermocatalytic decomposition performance under different reaction temperatures and space velocities were studied. The results showed that CuO/γ-Al2O3 had the best protection performance among several supported metal oxide catalysts. Through adjusting the CuO loading amount from 1% to 20%, it was found that 5% CuO/γ-Al2O3 exhibited the best thermocatalytic decomposition activity with higher dispersion and specific surface area. The deposition of phosphorus species caused the loss of specific surface area and crystal structure destruction, accounting for the decrease in catalyst activity.
Key words:dimethyl methylphosphonate/
metal oxide/
thermocatalytic decomposition/
chemical protection.

加载中
[1] GUPTA R C. Handbook of Toxicology of Chemical Warfare Agents[M]. London: Academic Press, 2009.
[2] MOTAMEDHASHEMI M M Y, EGOLFOPOULOS F, TSOTSIS T. Application of a flow-through catalytic membrane reactor (FTCMR) for the destruction of a chemical warfare simulant[J]. Journal of Membrane Science, 2011, 376(1/2): 119-131.
[3] GRAVEN W M, WELLER S W, PETERS D L. Catalytic conversion of an organophosphate vapor over platinum-alumina[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(2): 183-189.
[4] MONJI M, CIORA R, LIU P K T, et al. Thermocatalytic decomposition of dimethyl methylphosphonate (DMMP) in a multi-tubular, flow-through catalytic membrane reactor[J]. Journal of Membrane Science, 2015, 482: 42-48.
[5] MOTAMEDHASHEMI M M Y, EGOLFOPOULOS F, TSOTSIS T. Flow-through catalytic membrane reactors for the destruction of a chemical warfare simulant: Dynamic performance aspects[J]. Catalysis Today, 2016, 268:130-141.
[6] LIM K I, SONG Y I, NAM I S, et al. Effect of support on the decomposition of DMMP over Pt based catalysts[C]//National Technical Information Service. Proceedings of the ERDEC scientific conference on chemical and biological defense research. Harford County, 1996: 761-766.
[7] MOTAMEDHASHEMI M M Y, MONJI M, EGOLFOPOULOS F, et al. A hybrid catalytic membrane reactor for destruction of a chemical warfare simulant[J]. Journal of Membrane Science, 2015, 473: 1-7.
[8] TZOU T Z, WELLER S W. Catalytic oxidation of dimethyl methylphosphonate[J]. Journal of Catalysis, 1994, 146(2): 370-374.
[9] RYU S G, YANG J K, LEE H W, et al. Decomposition of dimethyl methylphosphonate over alumina-supported precious metal catalysts[J]. Hwahak Konghak, 1995, 33(4): 462-470.
[10] RATLIFF J S, TENNEY S A, HU X, et al. Decomposition of dimethyl methylphosphonate on Pt, Au, and Au-Pt clusters supported on TiO2(110)[J]. Langmuir, 2009, 25(1): 216-225.
[11] PANAYOTOV D A, MORRIS J R. Catalytic degradation of a chemical warfare agent simulant: Reaction mechanisms on TiO2-supported Au nanoparticles[J]. Journal of Physical Chemistry C, 2008, 112(19): 7496-7502.
[12] HENDERSON M A, WHITE J M. Adsorption and decomposition of dimethyl methylphosphonate on platinum(111)[J]. Journal of the American Chemical Society, 1988, 110(21): 6939-6947.
[13] TEMPLETON M K, WEINBERG W H. Adsorption and decomposition of dimethyl methylphosphonate on an aluminum oxide surface[J]. Journal of the American Chemical Society, 1985, 107(1): 97-108.
[14] RUSU C N, YATES J T. Adsorption and decomposition of dimethyl methylphosphonate on TiO2[J]. Journal of Physical Chemistry B, 2000, 104(51): 12292-12298.
[15] PANAYOTOV D A, MORRIS J R. Thermal decomposition of a chemical warfare agent simulant (DMMP) on TiO2: Adsorbate reactions with lattice oxygen as studied by infrared spectroscopy[J]. Journal of Physical Chemistry C, 2009, 113(35): 15684-15691.
[16] MITCHELL M B, SHEINKER V N, MINTZ E A. Adsorption and decomposition of dimethyl methylphosphonate on metal oxides[J]. Journal of Physical Chemistry B, 1997, 101(51): 11192-11203.
[17] CHEN D A, RATLIFF J S, HU X, et al. Dimethyl methylphosphonate decomposition on fully oxidized and partially reduced ceria thin films[J]. Surface Science, 2010, 604(5/6): 574-587.
[18] TESFAI T M, SHEINKER V N, MITCHELL M B. Decomposition of dimethyl methylphosphonate (DMMP) on alumina-supported iron oxide[J]. Journal of Physical Chemistry B, 1998, 102(38): 7299-7302.
[19] ZHOU J, MA S, KANG Y C, et al. Dimethyl methylphosphonate decomposition on titania-supported Ni clusters and films: A comparison of chemical activity on different Ni surfaces[J]. Journal of Physical Chemistry B, 2004, 108(31): 11633-11644.
[20] CAO L, SUIB S L, TANG X, et al. Thermocatalytic decomposition of dimethyl methylphosphonate on activated carbon[J]. Journal of Catalysis, 2001, 197(2): 236-243.
[21] WAN H, WANG Z, ZHU J, et al. Influence of CO pretreatment on the activities of CuO/gama-Al2O3 catalysts in CO + O2 reaction[J]. Applied Catalysis B: Environmental, 2008, 79(3): 254-261.
[22] LUO M, FANG P, HE M, et al. In-situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation[J]. Journal of Molecular Catalysis A: Chemical, 2005, 239(1): 243-248.
[23] FANG P, XIE Y, LUO M, et al. In-situ XRD and Raman spectroscopic study on the solid state reaction of CuO/Al2O3 catalysts at high temperature[J]. Acta Physico Chimica Sinica, 2005, 21(1): 102-105.
[24] LI Y X, SCHLUP J R, KLABUNDE K J. Fourier-transform infrared photoacoustic-spectroscopy study of the adsorption of organophosphorus compounds on heat-treated magnesium-oxide[J]. Langmuir, 1991, 7(7): 1394-1399.
[25] LI Y X, KOPER O, ATTEYA M, et al. Adsorption and decomposition of organophosphorus compounds on nanoscale metal oxide particles. Insitu GC-MS studies of pulsed microreactions over magnesium oxide[J]. Chemistry of Materials, 1992, 4(2): 323-330.
[26] MA S, ZHOU J, KANG Y C, et al. Dimethyl methylphosphonate decomposition on Cu surfaces: Supported Cu nanoclusters and films on TiO2(110)[J]. Langmuir, 2004, 20(22): 9686-9694.
[27] LEE K Y, HOUALLA M, HERCULES D M, et al. Catalytic oxidative decomposition of dimethyl methylphosphonate over Cu-substituted hydroxyapatite[J]. Journal of Catalysis, 1994, 145(1): 223-231.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:982
HTML全文浏览数:918
PDF下载数:70
施引文献:0
出版历程

刊出日期:2019-06-03




-->








γAl2O3负载金属氧化物热催化分解沙林毒剂模拟剂

高寒1,,
董艳春1,,
周术元1
1.军事科学院防化研究院,国民核生化灾害防护国家重点实验室,北京 100191
基金项目: 国家自然科学基金资助项目21701186国家自然科学基金资助项目(21701186)
关键词: 甲基膦酸二甲酯/
金属氧化物/
热催化分解/
化学防护
摘要:为了考察负载型金属氧化物催化剂对毒剂的热催化分解性能,以γ-Al2O3为载体,金属氧化物(Mn、Ni、Fe、Co、Cu和Ce)为活性组分,采用等体积浸渍法制备了负载型金属氧化物催化剂,对沙林毒剂模拟剂——甲基膦酸二甲酯(DMMP)进行了热催化分解评价实验,分别研究了不同反应温度、空速条件下热催化分解性能的变化规律。结果表明,在几种负载型金属氧化物催化剂中,CuO/γ-Al2O3表现出了最佳的防护性能。通过调控CuO负载量(1%~20%),发现5% CuO/γ-Al2O3具有较高的分散度和比表面积,热催化分解性能最好。磷物种的沉积造成催化剂比表面积的降低和晶体结构的破坏,是催化剂活性下降的主要原因。

English Abstract






--> --> --> 参考文献 (27)
相关话题/金属 化学 防化研究院 北京 结构

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 含油污泥化学清洗处理实验研究与工艺参数优化
    肖楠1,,朱玲1,,王春雨1,杨子育1,张亚宁1,齐美荣21.北京石油化工学院环境工程系,北京1026172.华油惠博普科技股份有限公司,北京100011基金项目:北京市长城****资助项目CIT&TCD20190314国家自然科学基金资助项目21207006国家级大学生创新创业计划项目2019J0 ...
    本站小编 Free考研考试 2021-12-31
  • 利用钝化剂控制城镇街道灰尘重金属污染
    郑煜绫1,,谭琲琳1,2,王莉淋1,1.四川农业大学环境学院,四川省农业环境工程重点实验室,成都6111302.中国科学院大学,北京100049基金项目:四川省科技计划项目2017SZ0039四川省科技计划项目(2017SZ0039)Controlofheavymetalpollutioninurb ...
    本站小编 Free考研考试 2021-12-31
  • 淹水对土壤重金属浸出行为的影响及机制
    杨宾1,2,3,,罗会龙2,3,刘士清4,韩聪4,宋秋浩5,曹云者2,1.北京建工环境修复股份有限公司,污染场地安全修复技术国家工程实验室,北京1001012.中国环境科学研究院,环境基准与风险评估国家重点试验室,北京1000123.北京师范大学水科学研究院,北京1008754.滨州市污染物排放总量 ...
    本站小编 Free考研考试 2021-12-31
  • 铬污染场地渣土混合物的化学还原修复
    史开宇1,2,3,,颜湘华1,2,,范琴4,沈重阳3,王兴润1,21.北京建工环境修复股份有限公司污染场地安全修复技术国家工程实验室,北京1000152.中国环境科学研究院环境基准与风险评估国家重点实验室,北京1000123.中国农业大学资源与环境学院,北京1001934.四川省环境保护科学研究院, ...
    本站小编 Free考研考试 2021-12-31
  • 膜浓缩液淋滤飞灰后灰渣重金属热处理特性分析
    孟棒棒1,,田书磊1,,刘宏博1,艾恒雨2,王野1,3,李松1,4,黄启飞11.中国环境科学研究院,环境基准与风险评估国家重点实验室,北京1000122.哈尔滨理工大学化学与环境工程学院,哈尔滨1500403.东北大学资源与土木工程学院,沈阳1108194.东北电力大学化学工程学院,吉林132012 ...
    本站小编 Free考研考试 2021-12-31
  • 电化学氧化法处理含盐苯醌模拟废水
    薛娟琴1,,张立华1,2,于丽花1,1.西安建筑科技大学冶金工程学院,西安7100552.西安建筑科技大学环境与市政工程学院,西安710055基金项目:国家自然科学基金资助项目51874227陕西省自然科学基金资助项目2017ZDJC-25陕西省自然科学基础研究计划项目2018JM5139陕西省教育 ...
    本站小编 Free考研考试 2021-12-31
  • 干/湿混法对中温SCR催化剂碱土金属中毒的影响
    陈叮叮1,,沈伯雄1,,刘智1,潘奕君1,刘丽君1,卢凤菊11.河北工业大学能源与环境工程学院,天津300401基金项目:国家重点研发计划资助项目2018YFB0605101,2016YFC0209202天津市自然科学重点基金资助项目18JCZDJC39800国家重点研发计划资助项目(2018YFB ...
    本站小编 Free考研考试 2021-12-31
  • 双层滤料颗粒床与金属纤维毡梯级过滤特性
    姚志伟1,,刘鹏1,朱永锋1,杨国华1,1.宁波大学海运学院,宁波315211基金项目:国家高技术研究发展计划(863)项目2008AA05Z205浙江省新苗人才计划项目2018R405077宁波大学大学生科研创新计划重点项目2018SRIP1729国家高技术研究发展计划(863)项目(2008AA ...
    本站小编 Free考研考试 2021-12-31
  • Fenton预处理对城市污泥重金属形态及生物淋滤溶出影响
    于贺1,,邱春生1,2,,王晨晨1,2,节剑勇3,孙力平1,2,骆尚廉4,刘范嘉5,陈剑61.天津城建大学环境与市政工程学院,天津3003842.天津市水质科学与技术重点实验室,天津3003843.河南省建筑设计研究院有限公司,郑州4500144.台湾大学环境工程学研究所,台北106735.天津凯英 ...
    本站小编 Free考研考试 2021-12-31
  • 餐厨垃圾有机酸发酵液淋洗去除土壤重金属
    戴世金1,,周紫薇1,张子莎1,雷茗淇1,林姝灿1,宋立杰2,3,诸毅2,3,安淼2,3,赵由才1,1.同济大学环境科学与工程学院,污染控制与资源化研究国家重点实验室,上海2000922.上海市环境工程设计科学研究院有限公司,上海2000323.上海污染场地修复工程技术研究中心,上海200032基金 ...
    本站小编 Free考研考试 2021-12-31