删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Ganoderma sp. SYBC L48漆酶酶学性质及其对酸性红1的脱色性能

本站小编 Free考研考试/2021-12-31

窦欣1,,
田乔鹏1,
王琦1,
管政兵1,
蔡宇杰1,
廖祥儒1,
1.江南大学生物工程学院,工业生物技术教育部重点实验室,无锡 214122
基金项目: 江苏省产学研前瞻项目BY2014023-28江苏省产学研前瞻项目(BY2014023-28)




Characterization of laccase from Ganoderma sp. SYBC L48 and its performance on acid red one decolorization

DOU Xin1,,
TIAN Qiaopeng1,
WANG Qi1,
GUAN Zhengbing1,
CAI Yujie1,
LIAO Xiangru1,
1.Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China

-->

摘要
HTML全文
(0)(0)
参考文献(25)
相关文章
施引文献
资源附件(0)
访问统计

摘要:对灵芝菌Ganoderma sp. SYBC L48漆酶进行了纯化和酶学性质分析,并利用该漆酶对偶氮染料酸性红1进行脱色处理;考察了脱色体系中各因素对脱色效率的影响;采用小麦种子和水稻种子对酶处理后的染料进行了毒性测试。结果表明,以ABTS为底物时,该酶的最适pH为2.5,最适温度为60 ℃,在pH 5~9和20~60 ℃具有良好的稳定性,Co2+、Cr3+和Fe3+离子对酶活性有较强的抑制作用。在染料浓度100 mg·L-1,酶浓度0.5 U·mL-1,介体HOBT浓度0.25 mmol·L-1,pH为4,50 ℃的条件下反应30 min后,该漆酶对酸性红1的脱色率可达90.3%;1 mmol·L-1的Cr3+、Cu2+、Al3+和Ni2+存在下,漆酶仍能催化酸性红1脱色;脱色后染料的植物毒性下降。上述结果表明该漆酶在纺织废水处理中具有一定的应用前景。
关键词: 灵芝漆酶/
酶学性质/
酶脱色/
偶氮染料废水治理/
酸性红1

Abstract:In this study, the laccase from Ganoderma sp. SYBC L48 was purified and its enzymatic properties were analyzed, then this purified laccase was used to decolorize the azo dye acid red one. The factors affecting dye decolorization rate in the reaction system were investigated, and the toxicity of enzyme treated dyes was evaluated with wheat and rice seeds. The results showed that the best activity of the purified laccase appeared at pH 2.5 and 60 ℃ with ABTS as the substrate, and an excellent stable enzyme activity occurred at pH 5~9 and 20~60 ℃, respectively. However, Co2+, Al3+ and Fe3+ ions had strong inhibition effects on the enzyme activity. The dye docolorization efficiency reached 90.3% after 30 min enzyme treating 100 mg·L-1 azo dye acid red one solution at 0.5 U·mL-1 laccase, 0.25 mmol·L-1 mediator of HOBT, pH 4 and 50 ℃. Even under the existence of 1 mmol·L-1 Cr3+, Cu2+, Al3+ and Ni2+, the purified laccase could decolorize acid red one. In addition, the plant toxicity of decolorized dye decreased. The above results indicated that the purified laccase has a certain application prospect in textile wastewater treatment.
Key words:Ganoderma laccase/
enzymatic properties/
enzyme decolorization/
azo dye decolorization/
acid red one.

加载中
[1] VIKRANT K, GIRI B S, RAZA N, et al. Recent advancements in bioremediation of dye: Current status and challenges[J]. Bioresource Technology, 2018, 253: 355-367.
[2] FATIMA M, FAROOQ R, LINDSTROM R W, et al. A review on biocatalytic decomposition of azo dyes and electrons recovery[J]. Journal of Molecular Liquids, 2017, 246: 275-281.
[3] MAQBOOL Z, HUSSAIN S, AHMAD T, et al. Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium [J]. Environmental Science and Pollution Research, 2016, 23(11): 11224-11239.
[4] ZHANG H, ZHANG S, HE F, et al. Characterization of a manganese peroxidase from white-rot fungus Trametes sp. 48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons[J]. Journal of Hazardous Materials, 2016, 320: 265-277.
[5] NIDHEESH P V, ZHOU M H, OTURAN M A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes[J]. Chemosphere, 2018, 197: 210-227.
[6] BALDRIAN P. Fungal laccases-occurrence and properties [J]. FEMS Microbiology Reviews, 2006, 30(2): 215-242.
[7] LEGERSKA B, CHMELOVA D, ONDREJOVIC M. Decolourization and detoxification of monoazo dyes by laccase from the white-rot fungus Trametes versicolor[J]. Journal of Biotechnology, 2018, 285: 84-90.
[8] ZHENG F, AN Q, MENG G, et al. A novel laccase from white rot fungus Trametes orientaiis: Purification, characterization, and application[J]. International Journal of Biological Macromolecules, 2017, 102: 758-770.
[9] ZENG X, CAI Y, LIAO X, et al. Anthraquinone dye assisted the decolorization of azo dyes by a novel Trametes trogii laccase [J]. Process Biochemistry, 2012, 47(1): 160-163.
[10] 赵世光, 杨帆, 孔芳, 等. 漆酶/介质系统催化偶氮染料直接橙S 脱色[J]. 环境工程学报, 2015, 10(7): 3912-3918.
[11] VANTAMURI A B, KALIWAL B B. Purification and characterization of laccase from Marasmius species BBKAV79 and effective decolorization of selected textile dyes[J]. 3Biotech, 2016, 6: 2190-5738.
[12] 赵世光, 张焱, 薛正莲, 等. Ganoderma lucidum U-281 漆酶催化偶氮染料活性黑5 脱色[J]. 菌物学报, 2012, 31(6): 867-877.
[13] 陈琼华, 周玉萍, 杨桃芳, 等. 灵芝漆酶催化直接耐晒翠蓝GL脱色条件的优化[J]. 微生物学通报, 2009, 36(12): 1812-1817.
[14] 韩君莉, 郭丽琼, 郑晓冰, 等. 灵芝TR6号漆酶的分离纯化及性质研究[J]. 应用与环境生物学报, 2008, 14(1): 99-103.
[15] 陈琼华, 周玉萍, 陈晓, 等. 韦伯灵芝漆酶的分离纯化及其性质[J]. 食品科学, 2010, 31(5): 201-205.
[16] XU F. Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases[J]. Journal of Biological Chemistry, 1997, 272(2): 924-928.
[17] HU X, WANG C, WANG L, et al. Influence of temperature, pH and metal ions on guaiacol oxidation of purified laccase from Leptographium qinlingensis[J]. World Journal of Microbiology & Biotechnology, 2014, 30(4): 1285-1290.
[18] 陶亮亮, 赵杰, 夏黎明. 重组里氏木霉产漆酶及其对染料金橙Ⅱ的脱色[J]. 浙江大学学报(工学版), 2014, 48(10): 1879-1883.
[19] ZHOU W, GUAN Z B, CAI Y J, et al. Preparation and characterization of immobilized spores with laccase activity from Bacillus Pumilus W3 on DEAE-cellulose and their application in dye decolorization[J]. Brazilian Journal of Chemical Engineering, 2017, 34(1): 41-52
[20] ZHOU W, GUAN Z B, CHEN Y, et al. Production of spore laccase from Bacillus pumilus W3 and its application in dye decolorization after immobilization[J]. Water Science and Technology, 2017, 76(1): 147-154.
[21] 袁慎峰, 陈志荣. 活性染料常用固色剂研究进展[J]. 纺织学报, 2002, 23(2): 73-75.
[22] 曹振宇. 金属络合染料的研究进展[J]. 河南工程学院学报(自然科学版), 2009, 21(2): 14-19.
[23] SUN J, PENG R H, XIONG A S, et al. Secretory expression and characterization of a soluble laccase from the Ganoderma lucidum strain 7071-9 in Pichia pastoris[J]. Molecular Biology Reports, 2012, 39(4): 3807-3814.
[24] PHUGARE S S, KALYANI D C, PATIL A V, et al. Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies[J]. Journal of Hazardous Materials, 2011, 186(1): 713-723.
[25] 张宇, 李明智, 梅荣武, 等. 应用漆酶SUKALacc脱色处理纺织染料[J]. 环境工程学报, 2015, 9(6): 2789-2794.



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:989
HTML全文浏览数:843
PDF下载数:149
施引文献:0
出版历程

刊出日期:2019-04-15




-->








Ganoderma sp. SYBC L48漆酶酶学性质及其对酸性红1的脱色性能

窦欣1,,
田乔鹏1,
王琦1,
管政兵1,
蔡宇杰1,
廖祥儒1,
1.江南大学生物工程学院,工业生物技术教育部重点实验室,无锡 214122
基金项目: 江苏省产学研前瞻项目BY2014023-28江苏省产学研前瞻项目(BY2014023-28)
关键词: 灵芝漆酶/
酶学性质/
酶脱色/
偶氮染料废水治理/
酸性红1
摘要:对灵芝菌Ganoderma sp. SYBC L48漆酶进行了纯化和酶学性质分析,并利用该漆酶对偶氮染料酸性红1进行脱色处理;考察了脱色体系中各因素对脱色效率的影响;采用小麦种子和水稻种子对酶处理后的染料进行了毒性测试。结果表明,以ABTS为底物时,该酶的最适pH为2.5,最适温度为60 ℃,在pH 5~9和20~60 ℃具有良好的稳定性,Co2+、Cr3+和Fe3+离子对酶活性有较强的抑制作用。在染料浓度100 mg·L-1,酶浓度0.5 U·mL-1,介体HOBT浓度0.25 mmol·L-1,pH为4,50 ℃的条件下反应30 min后,该漆酶对酸性红1的脱色率可达90.3%;1 mmol·L-1的Cr3+、Cu2+、Al3+和Ni2+存在下,漆酶仍能催化酸性红1脱色;脱色后染料的植物毒性下降。上述结果表明该漆酶在纺织废水处理中具有一定的应用前景。

English Abstract






--> --> --> 参考文献 (25)
相关话题/纺织 种子 江南大学 测试 环境工程