毛意中2,
黄珊1,
胡勤1,
黄庭1,
吴代赦1,
JOYoungmin3,
罗星2
1.南昌大学资源环境与化工学院,鄱阳湖环境与资源利用教育部重点实验室,南昌 330031
2.江西省建筑材料工业科学研究设计院,南昌 330200
3.韩国庆熙大学国际校区环境工程系,龙仁 446701
基金项目: 江西省博士后基金资助项目(2016KY13)
国家自然科学基金资助项目(13006730,41402312)
Analysis of characteristics of subway particles and control of magnetic filtration
SHI Junxiang1,,MAO Yizhong2,
HUANG Shan1,
HU Qin1,
HUANG Ting1,
WU Daishe1,
JO Youngmin3,
LUO Xing2
1.Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
2.Jiangxi Building Materials Scientific Research & Design Institute, Nanchang 330200, China
3.Department of Environmental Engineering, Kyunghee University Global Campus,Yongin 446701, South Korea
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:通过SEM-EDX和XRD对采集来的地铁颗粒物(PM10和PM2.5)进行形貌和成分分析,研究结果表明:地铁颗粒物具有粒径大(可达10 μm)、形状不规则、表面具有明显的刮擦痕迹等特征,主要成分为Si、C、O和Fe;其中Fe主要以Fe3O4、Fe2O3等氧化物的形式存在。针对地铁颗粒物含铁磁的特性,采用磁性过滤控制方法对地铁颗粒物开展研究,构建的磁性过滤装置对该地铁颗粒物的捕获效果可达90%以上,在一定磁性强度范围内(0 ~ 0. 300 T),滤网对颗粒物的捕获效果随着对其施加的磁性强度增加而提升,当施加的磁场强度为0. 300 T时,装置对地铁颗粒物的捕获效率接近100%,比相同条件下对飞灰的捕获效率高出10% ~ 15%,建议把磁过滤作为一种前处理装置用在含磁颗粒物处理上。
关键词: 地铁颗粒物/
含铁颗粒物/
磁性过滤/
SEM-EDX/
XRD
Abstract:PM10 and PM2.5 in subway station were collected, and analyzed by SEM-EDX and XRD. The results showed that subway particles had large particle sizes (up to 10 μm), irregular shape and obvious scratch marks on the surface. The main components of subway particles were Si, C, O and Fe, and the dominant speciations of Fe were Fe3O4 and Fe2O3. A magnetic filtration system was adopted to investigate subway particles with ferromagnetism. It was found that more than 90% of the subway particles can be captured by the magnetic filter device, and the performance was improved with the increasing permanent magnet’s magnetic strength (0 to 0. 300 T). When magnetic field reached 0. 300 T, nearly 100% of subway particles were captured by the magnetic filter device which is from 10% to 15% higher than fly ash. Our findings suggest that magnetic filtration can be used as a pre-treatment in Fe-containing particles removal.
Key words:subway particles/
iron-containing particles/
magnetic filtration/
SEM-EDX/
XRD.
[1] | XING Y F, XU Y H, SHI M H, et al.The impact of PM2.5 on the human respiratory system [J].Journal of Thoracic Disease, 2016, 8(1):69-74 |
[2] | CHUNG Y, DOMINICI F, WANG Y, et al.Associations between long-term exposure to chemical constituents of fine particulate matter (PM2.5) and mortality in medicare enrollees in the Eastern United States[J].Environmental Health Perspectives, 2015, 123(5):467-474 |
[3] | 郁珍艳, 高大伟, 李正泉,等. 华东区域PM2.5变化背景下浙江省人口经济暴露水平评估[J]. 环境科学, 2017, 38(12):4924-4931 10.13227/j.hjkx.201705039 |
[4] | 罗毅,邓琼飞,杨昆,等. 近20年来中国典型区域PM2.5时空演变过程[J]. 环境科学,2018,39(7):3003-3013 10.13227/j.hjkx.201709174 |
[5] | 魏国茹,史兴民.西安市PM2.5健康损害价值评估[J]. 环境科学,2018,39(7):3014-3021 10.13227/j.hjkx.201710174 |
[6] | 王永晓,曹红英,邓雅佳,等. 大气颗粒物及降尘中重金属的分布特征与人体健康风险评价[J].环境科学,2017,38(9):3575-3584 10.13227/j.hjkx.201702054 |
[7] | 陈远翔, 修光利, 杨军,等. 城市轨道交通地下车站环境健康风险因子及相关标准的研究进展[J]. 环境与健康杂志, 2012, 29(12):1139-1148 |
[8] | 张霞, 金轶, 王晓保,等. 上海两地铁车站空气中PM10和PM2.5浓度分布特征[J]. 环境与职业医学, 2014, 31(7):534-536 |
[9] | WILSON R, SPENGLER J D.Particles in Our Air: Concentrations and Health Effects[M].Boston:Harvard University Press,1996:259 |
[10] | 黄仁东, 仝慧贤, 刘抗,等. 西安市PM2.5污染特征及其估测模型[J]. 环境工程学报, 2015, 9(6):2974-2978 |
[11] | ZHANG Z, CHAU P Y K, LAI H K, et al.A review of effects of particulate matter-associated nickel and vanadium species on cardiovascular and respiratory systems[J].International Journal of Environmental Health Research, 2009, 19(3): 175-185 10.1080/09603120802460392 |
[12] | POPE III C A, DOCKERY D W.Acute health effects of PM10 pollution on symptomatic and asymptomatic children[J].American Review of Respiratory Disease, 1992, 145(5): 1123-1128 10.1164/ajrccm/145.5.1123 |
[13] | DOCKERY D W, SCHWARTZ J, SPENGLER J D.Air pollution and daily mortality: Associations with particulates and acid aerosols[J].Environmental Research, 1992, 59(2): 362-373 10.1016/S0013-9351(05)80042-8 |
[14] | DOCKERY D W, POPE C A.Acute respiratory effects of particulate air pollution[J].Annual Review of Public Health, 1994, 15(1): 107-132 10.1146/annurev.pu.15.050194.000543 |
[15] | KARLSSON H L, HOLGERSSON A, M?LLER L.Mechanisms related to the genotoxicity of particles in the subway and from other sources[J].Chemical Research in Toxicology, 2008, 21(3): 726-731 10.1021/tx7003568 |
[16] | BACHOUAL R, BOCZKOWSKI J, GOVEN D, et al.Biological effects of particles from the paris subway system[J].Chemical Research in Toxicology, 2007, 20(10): 1426-1433 10.1021/tx700093j |
[17] | JOHANSSON C, JOHANSSON P A.Particulate matter in the underground of Stockholm[J].Atmospheric Environment, 2003, 37(1): 3-9 10.1016/S1352-2310(02)00833-6 |
[18] | KAELSSON H L, NILSSON L, M?LLER L.Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells[J].Chemical Research in Toxicology, 2016, 18(1):19-23 10.1021/tx049723c |
[19] | KAM W, CHEUNG K, DAHER N, et al.Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro[J].Atmospheric Environment, 2011, 45(8): 1506-1516 10.1016/j.atmosenv.2010.12.049 |
[20] | KARLSSON H L, NILSSON L, M?LLER L.Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells[J].Chemical Research in Toxicology, 2005, 18(1): 19-23 10.1021/tx049723c |
[21] | KIM K Y, KIM Y S, ROH Y M, et al.Spatial distribution of particulate matter (PM10 and PM2.5) et al.Seasonal variation and their characterization of suspended particulate matter in the air of subway stations[J].Journal of Trace and Microprobe Techniques, 2001, 19(4): 469-485 10.1081/TMA-100107583 |
[22] | CHILLRUD S N, EPSTEIN D, ROSS J M, et al.Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City’s subway system[J].Environmental Science & Technology,2004,38(3):732-737 |
[23] | KANG S, HWANG H, PARK Y M, et al.Chemical compositions of subwa |
Turn off MathJax -->
点击查看大图
计量
文章访问数:699
HTML全文浏览数:556
PDF下载数:98
施引文献:0
出版历程
刊出日期:2018-09-20
-->
地铁颗粒物特征分析及磁性过滤控制
史俊祥1,,毛意中2,
黄珊1,
胡勤1,
黄庭1,
吴代赦1,
JOYoungmin3,
罗星2
1.南昌大学资源环境与化工学院,鄱阳湖环境与资源利用教育部重点实验室,南昌 330031
2.江西省建筑材料工业科学研究设计院,南昌 330200
3.韩国庆熙大学国际校区环境工程系,龙仁 446701
基金项目: 江西省博士后基金资助项目(2016KY13) 国家自然科学基金资助项目(13006730,41402312)
关键词: 地铁颗粒物/
含铁颗粒物/
磁性过滤/
SEM-EDX/
XRD
摘要:通过SEM-EDX和XRD对采集来的地铁颗粒物(PM10和PM2.5)进行形貌和成分分析,研究结果表明:地铁颗粒物具有粒径大(可达10 μm)、形状不规则、表面具有明显的刮擦痕迹等特征,主要成分为Si、C、O和Fe;其中Fe主要以Fe3O4、Fe2O3等氧化物的形式存在。针对地铁颗粒物含铁磁的特性,采用磁性过滤控制方法对地铁颗粒物开展研究,构建的磁性过滤装置对该地铁颗粒物的捕获效果可达90%以上,在一定磁性强度范围内(0 ~ 0. 300 T),滤网对颗粒物的捕获效果随着对其施加的磁性强度增加而提升,当施加的磁场强度为0. 300 T时,装置对地铁颗粒物的捕获效率接近100%,比相同条件下对飞灰的捕获效率高出10% ~ 15%,建议把磁过滤作为一种前处理装置用在含磁颗粒物处理上。
English Abstract
Analysis of characteristics of subway particles and control of magnetic filtration
SHI Junxiang1,,MAO Yizhong2,
HUANG Shan1,
HU Qin1,
HUANG Ting1,
WU Daishe1,
JO Youngmin3,
LUO Xing2
1.Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
2.Jiangxi Building Materials Scientific Research & Design Institute, Nanchang 330200, China
3.Department of Environmental Engineering, Kyunghee University Global Campus,Yongin 446701, South Korea
Keywords: subway particles/
iron-containing particles/
magnetic filtration/
SEM-EDX/
XRD
Abstract:PM10 and PM2.5 in subway station were collected, and analyzed by SEM-EDX and XRD. The results showed that subway particles had large particle sizes (up to 10 μm), irregular shape and obvious scratch marks on the surface. The main components of subway particles were Si, C, O and Fe, and the dominant speciations of Fe were Fe3O4 and Fe2O3. A magnetic filtration system was adopted to investigate subway particles with ferromagnetism. It was found that more than 90% of the subway particles can be captured by the magnetic filter device, and the performance was improved with the increasing permanent magnet’s magnetic strength (0 to 0. 300 T). When magnetic field reached 0. 300 T, nearly 100% of subway particles were captured by the magnetic filter device which is from 10% to 15% higher than fly ash. Our findings suggest that magnetic filtration can be used as a pre-treatment in Fe-containing particles removal.