删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

改性废弃皮革对U(VI)的动态吸附

本站小编 Free考研考试/2021-12-31

邓国鸿1,2,,
罗学刚1,2,
杨嘉怡2,
何雨2
1.西南科技大学生命科学与工程学院, 绵阳 621010
2.西南科技大学生物质材料教育部工程研究中心, 绵阳 621010
基金项目: 国家国防基础科研计划项目(16zg6101)




Dynamic adsorption of U(VI) by modified leather waste

DENG Guohong1,2,,
LUO Xuegang1,2,
YANG Jiayi2,
HE Yu2
1.College of Life Science and Engineering , Southwest University of Science and Technology, Mianyang 621010, China
2.Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China

-->

摘要
HTML全文
(0)(0)
参考文献(23)
相关文章
施引文献
资源附件(0)
访问统计

摘要:以改性废弃皮革为吸附剂对U(VI)进行动态吸附实验,采用直径3 cm、高50 cm的玻璃吸附柱,在填料高度为3、4和5 cm,U(VI)溶液进水流速为0.85、1.7和2.55 mL·min-1,初始U(VI)浓度为6、12和18 mg·L-1的条件下,考察了各因素对U(VI)吸附穿透曲线的影响。动态实验表明:柱高的降低、流速的增大和U(VI)浓度的增加均会使穿透时间提前;动态吸附穿透曲线能很好地符合Thomas模型的条件(R2>0.95),同时吸附量的预测值与实际测试值较为接近。使用穿透时间(ta)与填料高度(h)的关系式ta=220h-433(R2=0.998),在仅改变流速和初始U(VI)浓度时,穿透时间预测值与实际测试值相差较小,表明BDST模型能确定固定床的动态吸附周期。
关键词: 吸附柱/
Thomas模型/
铀(VI)浓度/
BDST模型/
废弃皮革

Abstract:The dynamic adsorption of U(VI) by modified leather waste was investigated in this study. Effects of various factors on the breakthrough time were studied by a glass adsorption column with a diameter of 3 cm and a height of 50 cm, including column heights (3, 4 and 5 cm), flow rates (0.85, 1.7 and 2.55 mL·min-1) and initial concentrations (6, 12 and 18 mg·L-1). The results indicated that the breakthrough time would be apparently reduced with increase in the flow rate and initial concentration or with decrease in column height. Thomas model was used to fitted the breakthrough curve, the significant coherence (R2>0. 95) exists between the experimental and theoretical results for the amount of adsorption. The relationship between breakthrough time(ta) and packing height (h) was ta=220h-433 (R2 = 0.998). The results showed that the error between the predicted and experimental values of breakthrough time was small when the flow rate and the initial U(VI) concentration are only changed. Based on these results, the bed depth service time (BDST) model can be used to predict the breakthrough time with certain flow rate and the initial U(VI) concentration.
Key words:adsorption columns/
Thomas model/
U(VI) concentration/
BDST model/
leather waste.

加载中
[1] 韩琪胜, 马儒超, 周志伟,等. 吸附水体中铀的研究进展[J]. 江西化工,2014(1):72-76
[2] 郑绵平. 青藏高原盐湖资源研究的新进展[J]. 地球学报,2001,22(2):97-102
[3] 张利珍, 谭秀民, 张秀峰. 我国盐湖资源开发利用的现状及对策分析[J]. 盐业与化工,2012,41(11):7-10
[4] KOSTAKI V T, FLOROU A B, PRODROMIDIS M I.Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium [J].Electrochimica Acta,2011,56(24):8857-8860 10.1016/j.electacta.2011.07.092
[5] REARDON E J, WANG Y.A.Limestone reactor for fluoride removal from wastewaters [J].Environmental Science & Technology,2000,34(15):3247-3253 10.1021/es990542k
[6] RAJESHKUMAR J, JOON-SOON K, JIN-YOUNG L, et al.A brief review on solvent extraction of uranium from acidic solutions [J].Separation & Purification Reviews,2011,40(2):77-125 10.1080/15422119.2010.549760
[7] FAN F, BAI J, FAN F, et al.Solvent extraction of uranium from aqueous solutions by α-benzoinoxime [J].Journal of Radioanalytical & Nuclear Chemistry,2014,300(3):1-5 10.1007/s10967-014-3002-8
[8] BELTRAMI D, COTE G, MOKHTARI H, et al.Recovery of uranium from wet phosphoric acid by solvent extraction processes [J].Chemical Reviews,2014,114(24):12002-23 10.1021/cr5001546
[9] STUCKER V, RANVILLE J, NEWMAN M, et al.Evaluation and application of anion exchange resins to measure groundwater uranium flux at a former uranium mill site [J].Water Research,2011,45(16):4866-4876 10.1016/j.watres.2011.06.030
[10] KUTAHYALI C, ERAL M.Sorption studies of uranium and thorium on activated carbon prepared from olive stones: Kinetic and thermodynamic aspects [J].Journal of Nuclear Materials,2010,396(2/3):251-256 10.1016/j.jnucmat.2009.11.018
[11] KIM J W, SOHN M H, KIM D S, et al.Production of granular activated carbon from waste walnut shell and its adsorption characteristics for Cu2+ ion [J].Journal of Hazardous Materials,2001,85(3):301-315 10.1016/S0304-3894(01)00239-4
[12] 曾雪, 罗学刚, 周建. 负载Zr(Ⅳ)的水解废弃皮革对氟离子的吸附性能[J]. 化工学报,2016,67(4):1368-1377
[13] 陈春燕, 范浩军, 冯萍. 制革固体废弃物的综合利用技术及其新进展[J]. 皮革科学与工程,2008,18(5):27-33
[14] 邓再芳,罗学刚,林晓艳. 稻壳吸附柱处理Cu2+废水的动态试验[J]. 林产化学与业,2010,30(4):69-72
[15] HASAN S H, RANJAN D, TALAT M.Agro-industrial waste “wheat bran” for the biosorptive remediation of selenium through continuous up-flow fixed-bed column [J].Journal of Hazardous Materials,2010,181(1/2/3):1134-1142 10.1016/j.jhazmat.2010.05.133
[16] THOMAS H C.Heterogeneous ion exchange in a flowing system [J].Journal of the American Chemical Society,1944,66(10):1664-1666 10.1021/ja01238a017
[17] 孔郑磊, 李晓晨, 杨继利,等. 改性荔枝皮对水中Pb(Ⅱ)的动态吸附特性[J]. 环境科学研究,2014,27(10):1186-1192
[18] MANOS M J, KANATZIDIS M G.Layered metal sulfides capture uranium from seawater [J].Journal of the American Chemical Society,2012,134(39):16441-16446 10.1021/ja308028n
[19] OGUZ E, ERSOY M.Removal of Cu2+ from aqueous solution by adsorption in a fixed bed column and neural network modelling [J].Chemical Engineering Journal,2010,164(1):56-62 10.1016/j.cej.2010.08.016
[20] VINODHINI V, DAS N.Packed bed column studies on Cr (VI) removal from tannery wastewater by neem sawdust [J].Desalination,2010,264(1):9-14 10.1016/j.desal.2010.06.073
[21] ZOU W, ZHAO L, ZHU L.Adsorption of uranium(VI) by grapefruit peel in a fixed-bed column: Experiments and prediction of breakthrough curves [J].Journal of Radioanalytical & Nuclear Chemistry,2013,295(1):717-727 10.1007/s10967-012-1950-4
[22] NGUYEN L H, VU T M, LE T T, et al.Ammonium removal from aqueous solutions by fixed-bed column using corncob-based modified biochar [J].Environmental Technology,2017,204(3):1-10 10.1080/09593330.2017.1404134
[23] VIJAYARAGHAVAN K, JEGAN J, PALANIVELU K, et al.Batch and column removal of copper from aqueous solution using a brown marine alga turbinaria ornata [J].Chemical Engineering Journal,2005,106(2):177-184 10.1016/j.cej.2004.12.039



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:409
HTML全文浏览数:268
PDF下载数:123
施引文献:0
出版历程

刊出日期:2018-09-20




-->








改性废弃皮革对U(VI)的动态吸附

邓国鸿1,2,,
罗学刚1,2,
杨嘉怡2,
何雨2
1.西南科技大学生命科学与工程学院, 绵阳 621010
2.西南科技大学生物质材料教育部工程研究中心, 绵阳 621010
基金项目: 国家国防基础科研计划项目(16zg6101)
关键词: 吸附柱/
Thomas模型/
铀(VI)浓度/
BDST模型/
废弃皮革
摘要:以改性废弃皮革为吸附剂对U(VI)进行动态吸附实验,采用直径3 cm、高50 cm的玻璃吸附柱,在填料高度为3、4和5 cm,U(VI)溶液进水流速为0.85、1.7和2.55 mL·min-1,初始U(VI)浓度为6、12和18 mg·L-1的条件下,考察了各因素对U(VI)吸附穿透曲线的影响。动态实验表明:柱高的降低、流速的增大和U(VI)浓度的增加均会使穿透时间提前;动态吸附穿透曲线能很好地符合Thomas模型的条件(R2>0.95),同时吸附量的预测值与实际测试值较为接近。使用穿透时间(ta)与填料高度(h)的关系式ta=220h-433(R2=0.998),在仅改变流速和初始U(VI)浓度时,穿透时间预测值与实际测试值相差较小,表明BDST模型能确定固定床的动态吸附周期。

English Abstract






--> --> --> 参考文献 (23)
相关话题/实验 测试 化工 工程 西南科技大学