删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

产铁载体菌对龙葵修复土壤Cd污染的促进效应

本站小编 Free考研考试/2021-12-31

王东升1,,
王立立1,
李取生1,
周婷1,
周雪芳1,
高琼1
1.暨南大学环境学院,广东省环境污染与健康重点实验室,广州510632
基金项目: 国家重点研发计划项目(2017YFD0801305)
广东省科技计划项目(2017A010105005)




Enhancing effect of siderophore-producting bacteria on remediation of cadmium-contaminated soil by Solanum nigrum L

WANG Dongsheng1,,
WANG Lili1,
LI Qusheng1,
ZHOU Ting1,
ZHOU Xuefang1,
GAO Qiong1
1.Key Laboratory of Environmental Pollution and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China

-->

摘要
HTML全文
(0)(0)
参考文献(42)
相关文章
施引文献
资源附件(0)
访问统计

摘要:通过CAS筛选培养基从龙葵根系土中筛选出2株产铁载体菌T1、Y2,经生理生化鉴定和16S rDNA序列分析,初步确定T1、Y2分别为铜绿假单胞菌和阴沟肠杆菌。将2株细菌接种至溶镉溶磷培养基中进行实验室培养,并对溶镉、溶磷结果和2株菌的胞外分泌物进行分析。结果表明,接种T1、Y2菌培养基中的有效镉、有效磷与不接菌对照相比显著增加(P0.05),接种T1、Y2菌处理的转运系数与未接菌对照相比未显著性变化(P>0.05)。接种菌处理有效促进了龙葵根系土壤难溶性形态Cd向可交换态Cd的转化。同时,研究发现接种T1、Y2菌可显著促进(P<0.05)龙葵对土壤Cd的吸收,强化了龙葵修复土壤镉污染的能力。
关键词: 产铁载体菌/
龙葵/
胞外分泌物/
Cd污染/
土壤修复

Abstract:Two strains of siderophore-producting bacteria T1 and Y2 were isolated from the root system soil of Solanum nigrum L by CAS screening medium. Physiological and biochemical identification and 16S rDNA sequence analysis confirmed that T1 and Y2 were Pseudomonas aeruginosa and Enterobacter cloacae, respectively. These strains were inoculated into the cadmium and phosphorus-dissolving medium for the determination of cadmium and phosphate dissolution, and the analysis of extracellular secretions. The results showed that the effective cadmium and available phosphorus in the culture medium inoculated with T1 and Y2 were significantly higher than those in the non-inoculated control (P0.05). The transport coefficient of Solanum nigrum L treated with T1 and Y2 inoculation did not change significantly compared with the control (P>0.05). The transformation of insoluble Cd to exchangeable form in root soil of Solanum nigrum L was promoted. Meanwhile it was found that inoculation with strains T1 and Y2 could significantly promote the uptake of Cd (P<0.05) and enhance the ability of Solanum nigrum L to remediate polluted soil with cadmium.
Key words:siderophore-producting bacteria/
Solanum nigrum L/
extracellular secretion/
Cd-contaminated/
soil remediation.

加载中
[1] WANG X, LIANG C H, YIN Y.Distribution and transformation of cadmium formations amended with serpentine and lime in contaminated meadow soil[J].Journal of Soils & Sediments,2015,15(7):1531-1537
[2] GARAU G, CASTALDI P, SANTONA L, et al.Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil[J].Geoderma,2007,142(1):47-57 10.1016/j.geoderma.2007.07.011
[3] LIU W, YANG Y S, LI P J, et al.Risk assessment of cadmium-contaminated soil on plant DNA damage using RAPD and physiological indices[J].Journal of Hazardous Materials,2009,161(2):878-883 10.1016/j.jhazmat.2008.04.038
[4] BRUNETTO G, G W B D M, TERZANO R, et al.Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity[J].Chemosphere,2016,162:293-307 10.1016/j.chemosphere.2016.07.104
[5] 陈圣安. 镉污染对水稻生理生化的影响[J]. 农技服务,2011, 28(7):1033-1035
[6] ZENG X W, QIU R L, YING R R, et al.The differentially-expressed proteome in Zn/Cd hyperaccumulator Arabis paniculata Franch in response to Zn and Cd[J].Chemosphere,2011,82(3):321-328 10.1016/j.chemosphere.2010.10.030
[7] KUPPER H, LOMBI E, ZHAO F J, et al.Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri[J].Planta,2000,212(1):75-84 10.1007/s004250000366
[8] SATARUG S, BAKER J R, URBENJAPOL S, et al.A global perspective on cadmium pollution and toxicity in non-occupationally exposed population[J].Toxicology Letters,2003,137(1):65-83
[9] 张金彪, 黄维南. 镉对植物的生理生态效应的研究进展[J]. 生态学报,2000,20(3):514-523
[10] 张春荣, 李红, 夏立江,等. 镉、锌对紫花苜蓿种子萌发及幼苗的影响[J]. 华北农学报,2005,20(1):96-99
[11] 孙光闻, 朱祝军, 陈日远,等. 镉对小白菜根细胞质膜氧化还原系统的影响[J]. 华北农学报,2007,22(3):65-67
[12] 李取生, 楚蓓, 石雷,等. 珠江口滩涂湿地土壤重金属分布及其对围垦的影响[J]. 农业环境科学学报,2007,26(4):224-228
[13] 魏树和, 周启星, 王新,等. 一种新发现的镉超积累植物龙葵(Solanum nigrum L)[J]. 科学通报,2004,49(24):2568-2573
[14] PUSCHENREITER M, STOGER G, LOMBI E, et al.Phytoextraction of heavy metal contaminated soils with Thlaspi goesingense and Amaranthus hybridus: Rhizosphere manipulation using EDTA and ammonium sulfate[J].Journal of Plant Nutrition and Soil Science,2015,164(6):615-621
[15] KHAN N, BANO A.Modulation of phytoremediation and plant growth by the treatment with PGPR, Ag nanoparticle and untreated municipal wastewater[J].International Journal of Phytoremediation,2016,18(12):1258-1269 10.1080/15226514.2016.1203287
[16] 马莹, 骆永明, 滕应,等. 根际促生菌及其在污染土壤植物修复中的应用[J]. 土壤学报,2013,50(5):1021-1031
[17] DIMKPA C O, SVATOS A, DABROWSKA P, et al.Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp.[J].Chemosphere,2008,74(1):19-25 10.1016/j.chemosphere.2008.09.079
[18] BRAUD A, JEZEQUEL K, BAZOT S, et al.Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria[J].Chemosphere,2009,74(2):280-286 10.1016/j.chemosphere.2008.09.013
[19] 魏树和, 周启星, 王新. 超积累植物龙葵及其对镉的富集特征[J]. 环境科学,2005,26(3):167-171
[20] 于彩莲. 生长调节剂强化龙葵修复镉污染土壤能力的研究[D]. 哈尔滨:哈尔滨理工大学,2011
[21] 殷永超, 吉普辉, 宋雪英,等. 龙葵(Solanum nigrum L.)野外场地规模Cd污染土壤修复试验[J]. 生态学杂志,2014,33(11):3060-3067
[22] 刘京. 龙葵对土壤中十溴联苯醚—镉复合污染的修复研究[D]. 广州:暨南大学,2013
[23] 林天兴, 唐梅, 黄明远,等. 高产铁载体棉田土壤细菌SS05的筛选与鉴定[J]. 微生物学通报,2012,39(5):668-676
[24] 魏本杰, 曾晓希, 刘志成,等. 产铁载体菌的筛选鉴定及活化镉的性能探究[J]. 环境科学与技术,2014(11):26-31
[25] 李艳梅, 王琼瑶, 涂卫国,等. 镍胁迫下产铁载体细菌对花生的促生性[J]. 微生物学通报,2017,44(8):1882-1890
[26] JIANG C Y, SHENG X F, QIAN M, et al.Isolation and characterization of a heavy metal-resistant Burkholderia sp.from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil[J].Chemosphere,2008,72(2):157-164 10.1016/j.chemosphere.2008.02.006
[27] ADESEMOYE A O, OBINI M, UGOJI E O.Comparison of plant growth-promotion with Pseudomonas aeruginosa and Bacillus subtilis in three vegetables[J].Brazilian Journal of Microbiology,2008,39(3):423-426 10.1590/S1517-83822008000300003
[28] SUPRAPTA D N, Ni M I M, KHALIMI K.Effectiveness of enterobacter cloacae to promote the growth and increase the yield of rice[J].Journal of Biology Agriculture & Healthcare,2014,4(1):44-50
[29] TESSIER A, CAMPBELL P G C, BISSON M.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844-851
[30] 赵翔, 陈绍兴, 谢志雄,等. 高产铁载体荧光假单胞菌Pseudomonas fluorescens sp-f的筛选鉴定及其铁载体特性研究[J]. 微生物学报,2006,46(5):691-695
[31] ZENG X X, TANG J X, JIANG P, et al.Isolation, characterization and extraction of mer gene of Hg(superscript 2+) resisting strain D2[J].Transactions of Nonferrous Metals Society of China,2010,20(3):507-512
[32] RIBEIRO C M, CAIDOSO E J.Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria angustifolia)[J].Microbiological Research,2012,167(2):69-78 10.1016/j.micres.2011.03.003
[33] 郭世鸿. 盐分胁迫对苋菜(Amaranthus mangostanus L.)活化和吸收土壤重金属Cd的影响机制[D]. 广州: 暨南大学,2017
[34] 朱彭玲. 新疆棉花根际土壤铁载体产生菌的遗传多样性及系统发育研究[D].成都: 四川农业大学,2008
[35] KIM J O, LEE Y W, CHUNG J.The role of organic acids in the mobilization of heavy metals from soil[J].KSCE Journal of Civil Engineering,2013,17(7):1596-1602
[36] 杜彩艳, 祖艳群, 李元. 石灰配施猪粪对Cd、Pb和Zn污染土壤中重金属形态和植物有效性的影响[J]. 植物科学学报,2008,26(2):170-174
[37] 魏佳, 李取生, 徐智敏,等. 多种有机酸对土壤中碳酸镉的活化效应[J]. 环境工程学报,2017,11(9):5298-5306 10.12030/j.cjee.201612218
[38] 陆文龙, 曹一平, 张福锁. 低分子量有机酸对不同磷酸盐的活化作用[J]. 华北农学报,2001,16(1):99-104
[39] SHI P, ZHU K, ZHANG Y, et al.Growth and cadmium accumulation of Solanum nigrum L.seedling were enhanced by heavy metal-tolerant strains of Pseudomonas aeruginosa[J].Water, Air & Soil Pollution,2016,227(12):459 10.1007/s11270-016-3167-6
[40] SINGH R P, JHA P, JHA P N.Bio-inoculation of plant growth-promoting rhizobacterium Enterobacter cloacae ZNP-3 increased resistance against salt and temperature stresses in wheat plant ( Triticum aestivum L.)[J].Journal of Plant Growth Regulation,2017,36(3):783-798 10.1007/s00344-017-9683-9
[41] 胡晓峰. 溶磷菌的筛选、溶磷条件优化及对玉米的促生作用研究[D].南京: 南京农业大学,2010
[42] ISRAR D, MUSTAFA G, KHAN K S, et al.Interactive effects of phosphorus and Pseudomonas putida on chickpea (Cicer arietinum L.) growth, nutrient uptake, antioxidant enzymes and organic acids exudation[J].Plant Physiology & Biochemistry,2016,108:304-312 10.1016/j.plaphy.2016.07.023



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:606
HTML全文浏览数:330
PDF下载数:159
施引文献:0
出版历程

刊出日期:2018-08-17




-->








产铁载体菌对龙葵修复土壤Cd污染的促进效应

王东升1,,
王立立1,
李取生1,
周婷1,
周雪芳1,
高琼1
1.暨南大学环境学院,广东省环境污染与健康重点实验室,广州510632
基金项目: 国家重点研发计划项目(2017YFD0801305) 广东省科技计划项目(2017A010105005)
关键词: 产铁载体菌/
龙葵/
胞外分泌物/
Cd污染/
土壤修复
摘要:通过CAS筛选培养基从龙葵根系土中筛选出2株产铁载体菌T1、Y2,经生理生化鉴定和16S rDNA序列分析,初步确定T1、Y2分别为铜绿假单胞菌和阴沟肠杆菌。将2株细菌接种至溶镉溶磷培养基中进行实验室培养,并对溶镉、溶磷结果和2株菌的胞外分泌物进行分析。结果表明,接种T1、Y2菌培养基中的有效镉、有效磷与不接菌对照相比显著增加(P0.05),接种T1、Y2菌处理的转运系数与未接菌对照相比未显著性变化(P>0.05)。接种菌处理有效促进了龙葵根系土壤难溶性形态Cd向可交换态Cd的转化。同时,研究发现接种T1、Y2菌可显著促进(P<0.05)龙葵对土壤Cd的吸收,强化了龙葵修复土壤镉污染的能力。

English Abstract






--> --> --> 参考文献 (42)
相关话题/土壤 污染 植物 鉴定 暨南大学