删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Fe-AC微电解活化过硫酸盐降解直接耐酸大红4BS

本站小编 Free考研考试/2021-12-31

尹汉雄1,,
唐玉朝1,
黄显怀1,
薛莉娉1,
黄健1,
李卫华1,
凌琪1
1.安徽建筑大学水污染控制与废水资源化安徽省重点实验室,合肥 230601
基金项目: 国家自然科学基金资助项目(50908001)
国家水体污染控制与治理科技重大专项 (2014ZX07405-003)
安徽省教育厅自然科学重点项目(KJ2015A109)
住建部科学技术项目(2016-K4-077)




Decolorization of direct fast scarlet 4BS by persulfate activated using iron-carbon micro-electrolysis

YIN Hanxiong1,,
TANG Yuchao1,
HUANG Xianhuai1,
XUE Liping1,
HUANG Jian1,
LI Weihua1,
LING Qi1
1.Key Laboratory of Anhui Province of Water Pollution Control and Wastewater Reuse, Anhui Jianzhu University, Hefei 230601, China

-->

摘要
HTML全文
(0)(0)
参考文献(46)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为快速脱色降解偶氮类染料,同时解决零价铁活化效率低、易被氧化的问题,以直接耐酸大红4BS(大红4BS)为模拟废水污染物,通过Fe-AC/PDS(铁碳微电解活化过硫酸钠)反应体系对大红4BS进行脱色降解。对影响大红4BS降解的几种因素如Fe:AC(铁碳质量比)、PDS浓度、初始pH等进行探究。结果表明,大红4BS脱色率在Fe:AC=3:1时高达94.7%。增大PDS浓度能明显促进反应进行,但超过5 mmol·L-1时,对体系影响不大。初始溶液pH对Fe-AC/PDS体系降解大红4BS作用显著,在酸性和中性(pH=3.02、4.67、7.32)时,大红4BS的脱色率分别高达98.8%、96.2%、94.7%,但在碱性(pH=9.38、10.78)条件下,其脱色率只有24.5%、18.7%。无机盐阴离子对Fe-AC/PDS体系降解大红4BS有抑制作用,而阳离子对其产生促进作用。自由基俘获实验表明Fe-AC/PDS体系降解大红4BS并不仅仅只是自由基的氧化反应,还存在其他复杂反应,继而对Fe-AC/PDS体系降解大红4BS的机理进行探讨。
关键词: Fe-AC微电解/
直接耐酸大红4BS/
活化/
过硫酸盐/
自由基

Abstract:Advanced oxidation technology based on sulfate radical may be an effective method for decolorization of azo dyes. In this paper, decolorization and degradation of azo dyes direct scarlet 4BS by persulfate activated using iron-carbon micro-electrolysis was reported. Several factors that affect the degradation of red 4BS was explored, such as Fe:AC, initial concentration of PDS,initial pH and many more. The results show that decolorization rate of red 4BS reached 94.7% when Fe:AC=3:1. The 4BS decolorization rate increased with the increasing of PDS concentration, but there was no significant change when PDS more than 5 mmol·L-1. The initial pH have significant effect for red 4BS degradation in Fe-AC/PDS system, the decolorization rate of red 4BS reached 98.8%, 96.2%, 94.7% in acidic and neutral solutions when pH=3.02,4.67,7.32, respectively, the decolorization rate was only 24.5%, 18.7% in alkaline solution when pH=9.38,10.78, respectively. Inorganic anions inhibited the degradation of the 4BS in the Fe-AC/PDS system, while cations promoted the degradation.Free radical capture test showed that degradation of red 4BS in Fe-AC/PDS system is not just free radical oxidation,than discuss the mechanism of Fe-AC/PDS degrade red 4BS.
Key words:iron-carbon micro-electrolysis/
direct fast scarlet 4BS/
activation/
persulfate/
free radicals.

加载中
[1] BALAPURE K, BHATT N, MADAMWAR D.Mineralization of reactive azo dyes present in simulated textile wastewater using down flow microaerophilic fixed film bioreactor[J].Bioresource Technology,2015,175:1-7 10.1016/j.biortech.2014.10.040
[2] RAWAT D, MISHRA V, SHARMA R S.Detoxification of azo dyes in the context of environmental processes[J].Chemosphere,2016,155:591-605 10.1016/j.chemosphere.2016.04.068
[3] YU Z, WANG W, SONG L, et al.Acceleration comparison between Fe2+/H2O2 and Co2+/oxone for decolouration of azo dyes in homogeneous systems[J].Chemical Engineering Journal,2013,234:475-483 10.1016/j.cej.2013.08.013
[4] DHAKA S, KUMAR R, KHAN M A, et al.Aqueous phase degradation of methyl paraben using UV-activated persulfate method[J].Chemical Engineering Journal,2017,321:11-19 10.1016/j.cej.2017.03.085
[5] NASSERI S, MAHVI A H, SEYEDSALEHI M, et al.Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: Effect of radical scavenger and water matrix[J].Journal of Molecular Liquids,2017,241:704-714 10.1016/j.molliq.2017.05.137
[6] FRONTISTIS Z, ANTONOPOULOU M, KONSTANTINOU I, et al.Degradation of ethyl paraben by heat-activated persulfate oxidation:Statistical evaluation of operating factors and transformation pathways[J].Environmental Science & Pollution Research International,2017,24(2):1073-1084 10.1007/s11356-016-6974-9
[7] ZHAO L, JI Y, KONG D, et al.Simultaneous removal of bisphenol A and phosphate in zero-valent iron activated persulfate oxidation process[J].Chemical Engineering Journal,2016,303:458-466 10.1016/j.cej.2016.06.016
[8] NETA P, HUIE R E, ROSS A B.Rate constants for reactions of inorganic radicals in aqueous-solution[J].Journal of Physical & Chemical Reference Data,1988,17(3):1027-1284 10.1063/1.555808
[9] LIN H, WU J, ZHANG H.Degradation of bisphenol A in aqueous solution by a novel electro/Fe3+/peroxydisulfate process[J].Separation & Purification Technology,2013,117(4):18-23 10.1016/j.seppur.2013.04.026
[10] WEI X, GAO N, LI C, et al.Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water[J].Chemical Engineering Journal,2016,285:660-670 10.1016/j.cej.2015.08.120
[11] 金晓英, 李任超, 陈祖亮. 纳米零价铁活化过硫酸钠降解2,4-二氯苯酚[J]. 环境化学,2014,33(5):812-818 10.7524/j.issn.0254-6108.2014.05.007
[12] 杨世迎, 郑迪, 常书雅, 等. 基于零价铝的氧化/还原技术在水处理中的应用[J]. 化学进展,2016,28(5):754-762 10.7536/PC151047
[13] JI Q, LI J, XIONG Z, et al.Enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution[J].Chemosphere,2016,172:10-20 10.1016/j.chemosphere.2016.12.128
[14] 于辉, 金春姬, 王鹏远, 等.Fe2+与Fe0活化过二硫酸盐降解活性艳蓝KN-R[J]. 环境科学研究,2015,28(1):88-95
[15] DENG J, SHAO Y, GAO N, et al.Zero-valent iron/persulfate(Fe0/PS) oxidation acetaminophen in water[J].International Journal of Environmental Science and Technology,2014,11(4):881-890 10.1007/s13762-013-0284-2
[16] LI H, WAN J, MA Y, et al.New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions[J].Chemical Engineering Journal,2014,250:137-147 10.1016/j.cej.2014.03.092
[17] RODRIGUEZ S, VASQUEZ L, COSTA D, et al.Oxidation of orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI)[J].Chemosphere,2014,101(3):86-92 10.1016/j.chemosphere.2013.12.037
[18] ZHANG L, ZHANG L, LI D.Enhanced dark fermentative hydrogen production by zero-valent iron activated carbon micro-electrolysis[J].International Journal of Hydrogen Energy,2015,40(36):12201-12208 10.1016/j.ijhydene.2015.07.106
[19] WANG L, QI Y, WANG D, et al.Advanced landfill leachate treatment using iron-carbon microelectrolysis-Fenton process: Process optimization and column experiments[J].Journal of Hazardous Materials,2016,318:460-467 10.1016/j.jhazmat.2016.07.033
[20] 任健, 马宏瑞, 马炜宁, 等.Fe/C微电解-Fenton氧化-混凝沉淀-生化法处理抗生素废水的试验研究[J]. 水处理技术,2011,37(3):84-87
[21] 廉菲, 刘畅, 李国光, 等. 高分子固体废物基活性炭对有机染料的吸附解吸行为研究[J]. 环境科学,2012,33(1):147-155
[22] 林朝萍, 宁寻安, 巫俊楫, 等. 废旧布袋活性炭深度处理印染废水尾水[J]. 环境工程学报,2016,10(12):6977-6982 10.12030/j.cjee.201507107
[23] YANG Z, MA Y, LIU Y, et al.Degradation of organic pollutants in near-neutral pH solution by Fe-C micro-electrolysis system[J].Chemical Engineering Journal,2017,315:403-414 10.1016/j.cej.2017.01.042
[24] ZHANG X B, DONG W Y, SUN F Y, et al.Degradation efficiency and mechanism of azo dye RR2 by a novel ozone aerated internal micro-electrolysis filter[J].Journal of Hazardous Materials,2014,276(9):77-87 10.1016/j.jhazmat.2014.05.010
[25] 杨德敏, 夏宏, 程方平, 等.Fe/C微电解耦合H2O2氧化处理页岩气钻井废水[J]. 环境工程学报,2016,10(11):6473-6478 10.12030/j.cjee.201506070
[26] 董洪梅, 孙云娜, 魏东洋, 等.Fe-C-H2O2 降解+溴联苯醚的试验研究[J]. 水处理技术,2013,39(8):52-56 10.3969/j.issn.1000-3770.2013.08.013
[27] 汪永红, 潘倩, 王丽燕, 等.Fe-C-H2O2协同催化氧化处理印染废水[J]. 生态环境学报,2010,26(6):1374-1377 10.3969/j.issn.1674-5906.2010.06.021
[28] 杨鑫, 杨世迎, 王雷雷, 等. 活性炭催化过二硫酸盐降解水中AO7[J]. 环境科学,2011,32(7):1960-1966
[29] LEE Y C, LO S L, KUO J, et al.Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon[J].Journal of Hazardous Materials,2013,261:463-469 10.1016/j.jhazmat.2013.07.054
[30] 王宇轩, 王应军, 方明珠. 活性炭负载CuO催化过硫酸盐去除活性艳红X-3B染料[J]. 环境工程学报,2016,10(1):230-236
[31] 尹汉雄, 唐玉朝, 黄显怀, 等. 紫外光强化Fe(II)-EDTA活化过硫酸盐降解直接耐酸大红4BS[J]. 环境科学研究,2017,30(7):1105-1111
[32] PENG L, LIU Z, WANG X, et al.Enhanced decolorization of methyl orange in aqueous solution using iron-carbon micro-electrolysis activation of sodium persulfate[J].Chemosphere,2017,180:100-107 10.1016/j.chemosphere.2017.04.019
[33] 高金龙, 马玉琳, 孟庆来, 等. 二价铁活化过硫酸盐降解土壤中十溴联苯醚[J]. 环境工程学报,2016,10(12):7339-7343 10.12030/j.cjee.201507210
[34] 孙大贵, 陶长元, 刘作华, 等. 活性炭-Fenton组合法去除水中PAEs的研究[J]. 环境科学,2007,28(12):2734-2739
[35] AHMADI M, GHANBARI F, MORADI M.Photocatalysis assisted by peroxymonosulfate and persulfate for benzotriazole degradation: Effect of pH on sulfate and hydroxyl radicals[J].Water Science & Technology,2015,72(11):2095-2102 10.2166/wst.2015.437
[36] DENG S, LI D, XUE Y, et al.Iron [Fe(0)]-rich substrate based on iron-carbon micro-electrolysis for phosphorus adsorption in aqueous solutions[J].Chemosphere,2017,168:1486-1493 10.1016/j.chemosphere.2016.11.043
[37] 王忠明, 黄天寅, 陈家斌, 等. 载银活性炭活化过硫酸钠降解酸性橙7[J]. 环境科学,2015,36(11):4127-4134 10.13227/j.hjkx.2015.11.024
[38] 杨世迎, 张翱, 任腾飞, 等. 炭基材料催化过氧化物降解水中有机污染物:表面作用机制[J]. 化学进展,2017,29(5):539-552 10.7536/PC170310
[39] BOEHM H P.Chemical identification of surface groups[J].Advances in Catalysis,1966,16:179-274
[40] LIU Y, ZHOU A, GAN Y, et al.Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions[J].Science of the Total Environment,2016,548-549:1-5 10.1016/j.scitotenv.2016.01.011
[41] MA Z, YANG Y, JIANG Y, et al.Enhanced degradation of 2,4-dinitrotoluene in groundwater by persulfate activated using iron-carbon micro-electrolysis[J].Chemical Engineering Journal,2017,311:183-190 10.1016/j.cej.2016.11.083
[42] ZOU H, JIANG L, LI M, et al.Effects of anions on micro-electrolysis of chlorobenzene in groundwater[J].Environmental Protection of Chemical Industry,2011,31(2):101-103 10.3969/j.issn.1006-1878.2011.02.002
[43] YANG S Y, WANG P, YANG X, et al.Degradation efficiencies of azo dye acid orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide[J].Journal of Hazardous Materials,2010,179(1/2/3):552-558 10.1016/j.jhazmat.2010.03.039
[44] TAN L, LIANG B, FANG Z, et al.Effect of humic acid and transition metal ions on the debromination of decabromodiphenyl by nano zero-valent iron: Kinetics and mechanisms[J].Journal of Nanoparticle Research,2014,16(12):1-13 10.1007/s11051-014-2786-3
[45] WANG Y, CHEN S Y, YANG X, et al.Degradation of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) by a nano zerovalent iron-activated persulfate process: The effect of metal ions[J].Chemical Engineering Journal,2017,317:613-622 10.1016/j.cej.2017.02.070
[46] PU B, AMP Q S.Treatment of drilling wastewater by iron-carbon micro-electrolysis method[J].Environmental Protection of Oil & Gas Fields,2016,26(2):7-9



加载中


Turn off MathJax -->
WeChat 点击查看大图

计量

文章访问数:1589
HTML全文浏览数:1089
PDF下载数:722
施引文献:0
出版历程

刊出日期:2018-03-22




-->








Fe-AC微电解活化过硫酸盐降解直接耐酸大红4BS

尹汉雄1,,
唐玉朝1,
黄显怀1,
薛莉娉1,
黄健1,
李卫华1,
凌琪1
1.安徽建筑大学水污染控制与废水资源化安徽省重点实验室,合肥 230601
基金项目: 国家自然科学基金资助项目(50908001) 国家水体污染控制与治理科技重大专项 (2014ZX07405-003) 安徽省教育厅自然科学重点项目(KJ2015A109) 住建部科学技术项目(2016-K4-077)
关键词: Fe-AC微电解/
直接耐酸大红4BS/
活化/
过硫酸盐/
自由基
摘要:为快速脱色降解偶氮类染料,同时解决零价铁活化效率低、易被氧化的问题,以直接耐酸大红4BS(大红4BS)为模拟废水污染物,通过Fe-AC/PDS(铁碳微电解活化过硫酸钠)反应体系对大红4BS进行脱色降解。对影响大红4BS降解的几种因素如Fe:AC(铁碳质量比)、PDS浓度、初始pH等进行探究。结果表明,大红4BS脱色率在Fe:AC=3:1时高达94.7%。增大PDS浓度能明显促进反应进行,但超过5 mmol·L-1时,对体系影响不大。初始溶液pH对Fe-AC/PDS体系降解大红4BS作用显著,在酸性和中性(pH=3.02、4.67、7.32)时,大红4BS的脱色率分别高达98.8%、96.2%、94.7%,但在碱性(pH=9.38、10.78)条件下,其脱色率只有24.5%、18.7%。无机盐阴离子对Fe-AC/PDS体系降解大红4BS有抑制作用,而阳离子对其产生促进作用。自由基俘获实验表明Fe-AC/PDS体系降解大红4BS并不仅仅只是自由基的氧化反应,还存在其他复杂反应,继而对Fe-AC/PDS体系降解大红4BS的机理进行探讨。

English Abstract






--> --> --> 参考文献 (46)
相关话题/环境科学 环境工程 化学 资源 安徽建筑大学