宋佳诺1,
王睿键1,
李莹1
1.辽宁工程技术大学土木工程学院,阜新 123000
基金项目: 国家自然科学基金资助项目(51474122,51174267)
辽宁省“百千万人才工程” 资助项目(2014921069)
辽宁省教育厅科学技术研究项目资助
格平绿色行动辽宁环境科研“123工程”资助(CEPF2014-123-2-4)
Treatment of Mn2+ acid mine wastewater by fixed bed adsorption
XIAO Liping1,,SONG Jianuo1,
WANG Ruijian1,
LI Ying1
1.School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China
-->
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要:为了探究同步去除酸性矿山废水(AMD)中酸度及重金属离子的新型多功能矿物环保材料,确定最佳运行方式,在固定床操作条件下,对比研究复合颗粒吸附柱、锰砂柱、复合颗粒-锰砂混合填充柱对AMD中酸度、Mn2+的去除效果,确定小型连续流反应器的最佳吸附剂;在确定最佳吸附剂的基础上,对比研究升流淹没式、降流淹没式、降流非淹没式吸附柱对AMD中酸度、Mn2+的去除效果,确定小型连续流反应器的最佳运行方式;并结合SEM、XRD等微观分析揭示复合颗粒动态吸附去除重金属离子的规律及机理。实验结果表明:3种吸附材料对Mn2+的吸附容量关系为:PG柱(28.871 mg·g-1)>PG-MS柱(16.935 mg·g-1)>MS柱(2.194 mg·g-1);3种运行方式对Mn2+的吸附容量关系为:降流非淹没式(28.817 mg·g-1)>升流淹没式(26.532 mg·g-1)>降流淹没式(23.479 mg·g-1)。因此,固定床吸附柱处理含Mn2+酸性矿山废水动态实验的最佳吸附材料为膨润土-钢渣复合颗粒,复合颗粒的最佳运行方式为降流非淹没式。PG在去除Mn2+的过程中不仅存在吸附、化学沉淀等作用,还存在聚沉作用,即具有吸附-聚沉协同作用,并且Mn2+在复合颗粒表面的赋存状态主要以Mn-Si-O相结合的矿物相以及CaMn7O12沉淀物存在。
关键词: 含Mn2+酸性矿山废水/
膨润土/
钢渣/
重金属/
固定床吸附柱
Abstract:To explore the optimal removal of acidity and heavy metal ions in acid mine drainage (AMD) and ascertain the optimum operation,with the condition of fixed bed operation, the optimum adsorbent for small continuous flow reactor was determined by comparing the effect of composite particle column, manganese sand column, composite particles and manganese sand mixing column on acidity and Mn2+ removal in AMD. Based on determining the best adsorbent, the optimal operation mode of small continuous flow reactor was determined by comparing the effect of upflow submerged and downflow submerged and downflow non-submerged on the acidity and Mn2+ removal in AMD. Combined with microscopic analysis such as SEM and XRD, the regularity and mechanism of heavy metal ions removed by dynamic adsorption of composite particles were revealed. The results showed that the adsorption capacity of Mn2+ adsorbate was PG column (28.871 mg·g-1)> PG-MS column (16.935 mg·g-1)> MS column (2.194 mg·g-1). The relationship between the total adsorption capacity of Mn2+ and the three run modes was downflow non-submerged (28.817 mg·g-1)> upflow submerged (26.532 mg·g-1)> downflow submerged (23.479 mg·g-1). Therefore, the best adsorption material for the dynamic treatment of AMD containing Mn2+ is bentonite-steel slag composite particles. The best way to perform composite particles is downflow non-submerged. In the process of removing Mn2+, addition of Mn2+ function as adsorption, chemical precipitation, accumulation and so on. Mn2+ on the surface of the composite particles mainly existes in combination with Mn-Si-O of the mineral phase and the CaMn7O12 precipitate present.
Key words:mine wastewater containing Mn2+ acid/
bentonite/
steel slag/
heavy metal/
fixed bed adsorption column.
[1] | FENG D, VAN D J S J, ALDRICH C.Removal of pollutants from acid mine wastewater using metallurgical by-product slags[J].Separation and Purification Technology,2004,0(1):61-67 |
[2] | 石太宏, 杨娣, 冯玉香, 等.SAPS 处理酸性矿山废水的模拟应用研究[J].环境工程学报, 2015,9(5):2277-2283 |
[3] | 肖利萍, 汪兵兵, 魏芳, 等.新型碳源驯化的 SRB 去除酸性矿山废水中 SO2-4最佳反应条件[J].环境工程学报, 2014,8(5):1705-1710 |
[4] | 左莉娜, 贺前锋.酸性矿山废水的治理技术现状及进展[J].环境工程, 2013,1(5):35-38 |
[5] | 鞠海燕, 黄春文, 罗文海, 等.金属矿山酸性废水危害及治理技术的现状与对策[J].中国钨业,2008,3(2):41-44 |
[6] | 王磊, 李泽琴, 姜磊.酸性矿山废水的危害与防治对策研究[J].环境科学与管理,2009,4(10):82-84 |
[7] | 杨秀敏, 钟子楠, 潘宇, 等.重金属离子在钠基膨润土中的吸附特征与机理[J].环境工程学报,2013,7(7):2775-2780 |
[8] | 李媛媛, 刘文华, 陈福强, 等.巯基化改性膨润土对重金属的吸附性能[J].环境工程学报, 2013,7(8):3013-3018 |
[9] | 刘盛余, 马少健, 高谨, 等.钢渣吸附剂吸附机理的研究[J].环境工程学报,2008,2(1):115-119 |
[10] | 高瑾, 刘盛余, 羊依金, 等.钢渣吸附处理苯酚废水的研究[J].环境工程学报, 2010,4(2):323-326 |
[11] | 肖利萍, 魏芳, 李月, 等.膨润土复合新型吸附剂处理含Mn2+废水[J].环境工程学报, 2014,8(7):2707-2713 |
[12] | KANG H J, AN K G, KIM D S.Utilization of steel slag as an adsorbent of ionic lead in wastewater[J].Journal of Environmental Science and Health,2004,9(11/12):3015-3028 |
[13] | 王建兵, 蒋雯婷, 李亚男, 等.改性锰砂滤料处理高铁锰煤矿矿井水[J].环境工程学报, 2012,6(11):18-21 |
[14] | 熊玲, 张瑞雪, 吴攀, 等.改性锰砂对废水中锰的吸附特性研究[J].环境工程学报,2012,6(1):206-211 |
[15] | 傅金祥,张丹丹,安娜,等.石英砂/锰砂混层滤料的除铁除锰效果及其影响因素[J].中国给水排水,2007,3(23):6-10 |
Turn off MathJax -->
点击查看大图
计量
文章访问数:1188
HTML全文浏览数:746
PDF下载数:370
施引文献:0
出版历程
刊出日期:2018-02-08
-->
固定床吸附柱处理含Mn2+酸性矿山废水
肖利萍1,,宋佳诺1,
王睿键1,
李莹1
1.辽宁工程技术大学土木工程学院,阜新 123000
基金项目: 国家自然科学基金资助项目(51474122,51174267) 辽宁省“百千万人才工程” 资助项目(2014921069) 辽宁省教育厅科学技术研究项目资助 格平绿色行动辽宁环境科研“123工程”资助(CEPF2014-123-2-4)
关键词: 含Mn2+酸性矿山废水/
膨润土/
钢渣/
重金属/
固定床吸附柱
摘要:为了探究同步去除酸性矿山废水(AMD)中酸度及重金属离子的新型多功能矿物环保材料,确定最佳运行方式,在固定床操作条件下,对比研究复合颗粒吸附柱、锰砂柱、复合颗粒-锰砂混合填充柱对AMD中酸度、Mn2+的去除效果,确定小型连续流反应器的最佳吸附剂;在确定最佳吸附剂的基础上,对比研究升流淹没式、降流淹没式、降流非淹没式吸附柱对AMD中酸度、Mn2+的去除效果,确定小型连续流反应器的最佳运行方式;并结合SEM、XRD等微观分析揭示复合颗粒动态吸附去除重金属离子的规律及机理。实验结果表明:3种吸附材料对Mn2+的吸附容量关系为:PG柱(28.871 mg·g-1)>PG-MS柱(16.935 mg·g-1)>MS柱(2.194 mg·g-1);3种运行方式对Mn2+的吸附容量关系为:降流非淹没式(28.817 mg·g-1)>升流淹没式(26.532 mg·g-1)>降流淹没式(23.479 mg·g-1)。因此,固定床吸附柱处理含Mn2+酸性矿山废水动态实验的最佳吸附材料为膨润土-钢渣复合颗粒,复合颗粒的最佳运行方式为降流非淹没式。PG在去除Mn2+的过程中不仅存在吸附、化学沉淀等作用,还存在聚沉作用,即具有吸附-聚沉协同作用,并且Mn2+在复合颗粒表面的赋存状态主要以Mn-Si-O相结合的矿物相以及CaMn7O12沉淀物存在。
English Abstract
Treatment of Mn2+ acid mine wastewater by fixed bed adsorption
XIAO Liping1,,SONG Jianuo1,
WANG Ruijian1,
LI Ying1
1.School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China
Keywords: mine wastewater containing Mn2+ acid/
bentonite/
steel slag/
heavy metal/
fixed bed adsorption column
Abstract:To explore the optimal removal of acidity and heavy metal ions in acid mine drainage (AMD) and ascertain the optimum operation,with the condition of fixed bed operation, the optimum adsorbent for small continuous flow reactor was determined by comparing the effect of composite particle column, manganese sand column, composite particles and manganese sand mixing column on acidity and Mn2+ removal in AMD. Based on determining the best adsorbent, the optimal operation mode of small continuous flow reactor was determined by comparing the effect of upflow submerged and downflow submerged and downflow non-submerged on the acidity and Mn2+ removal in AMD. Combined with microscopic analysis such as SEM and XRD, the regularity and mechanism of heavy metal ions removed by dynamic adsorption of composite particles were revealed. The results showed that the adsorption capacity of Mn2+ adsorbate was PG column (28.871 mg·g-1)> PG-MS column (16.935 mg·g-1)> MS column (2.194 mg·g-1). The relationship between the total adsorption capacity of Mn2+ and the three run modes was downflow non-submerged (28.817 mg·g-1)> upflow submerged (26.532 mg·g-1)> downflow submerged (23.479 mg·g-1). Therefore, the best adsorption material for the dynamic treatment of AMD containing Mn2+ is bentonite-steel slag composite particles. The best way to perform composite particles is downflow non-submerged. In the process of removing Mn2+, addition of Mn2+ function as adsorption, chemical precipitation, accumulation and so on. Mn2+ on the surface of the composite particles mainly existes in combination with Mn-Si-O of the mineral phase and the CaMn7O12 precipitate present.