中文关键词
曝气人工湿地低污染水脱氮曝气量碳氮比 英文关键词aerated constructed wetlandlow pollution waterdenitrificationaeration rateC/N ratio |
作者 | 单位 | E-mail | 李琳琳 | 中国环境科学研究院国家环境保护湖泊污染控制重点实验室, 湖泊水污染治理与生态修复技术国家工程实验室, 国家环境保护洞庭湖科学观测研究站, 北京 100012 北京师范大学水科学研究院, 北京 100875 | stulilinlin@163.com | 李荣涛 | 中国环境科学研究院国家环境保护湖泊污染控制重点实验室, 湖泊水污染治理与生态修复技术国家工程实验室, 国家环境保护洞庭湖科学观测研究站, 北京 100012 山西师范大学生命科学学院, 临汾 041000 | | 孔维静 | 中国环境科学研究院国家环境保护湖泊污染控制重点实验室, 湖泊水污染治理与生态修复技术国家工程实验室, 国家环境保护洞庭湖科学观测研究站, 北京 100012 | | 杨萍果 | 山西师范大学生命科学学院, 临汾 041000 | lfypg@126.com | 杜志超 | 中国环境科学研究院国家环境保护湖泊污染控制重点实验室, 湖泊水污染治理与生态修复技术国家工程实验室, 国家环境保护洞庭湖科学观测研究站, 北京 100012 辽宁工程技术大学土木工程学院, 阜新 123000 | | 毕斌 | 中国环境科学研究院国家环境保护湖泊污染控制重点实验室, 湖泊水污染治理与生态修复技术国家工程实验室, 国家环境保护洞庭湖科学观测研究站, 北京 100012 | | 卢少勇 | 中国环境科学研究院国家环境保护湖泊污染控制重点实验室, 湖泊水污染治理与生态修复技术国家工程实验室, 国家环境保护洞庭湖科学观测研究站, 北京 100012 | lushy2000@163.com |
|
中文摘要 |
低污染水由于排放量大、来源范围广,成为地表水体中氮的重要贡献者.为探究人工湿地对低污染水脱氮时的影响因素,构建曝气人工湿地,分析其在不同运行工况下对低污染水中不同形态氮的去除效果.结果表明,低污染水中TN和NO3--N去除率与水力停留时间(HRT)、碳氮比(C/N)和温度显著正相关(r>0.65,P<0.01),与溶解氧(DO)极显著负相关(r<-0.85,P<0.01);NH4+-N去除率与各因素之间相关性不显著(P>0.05).曝气量和HRT的改变,可以调节湿地内DO环境,为湿地内营造交替好-缺氧环境,利于硝化与反硝化过程.在曝气量为0.2 L·min-1、HRT为1 d时,曝气人工湿地对低污染水中TN、NH4+-N和NO3--N去除率分别可达90.15%、98.25%和86.22%,实现了TN、NH4+-N和NO3--N同步高效去除.C/N和温度是影响TN和NO3--N去除效果的重要因子.随C/N增加,TN和NO3--N去除率明显提升;在进水C/N为5时,TN和NO3--N去除率达到最高,分别为68.49%和50.48%,其中TN去除率较无碳源时提高了37.43%.此外,温度从8~12℃升高至28~32℃时,曝气CW脱氮速率逐步增大.相较于低温(8~12℃),在高温(28~32℃)时CW对TN和NO3--N去除率分别提高了29.37%和50.24%;而NH4+-N去除率受C/N和温度影响不大. |
英文摘要 |
Low-pollution water has become an important contributor of nitrogen in surface water due to its large discharge volume and wide range of sources. To investigate the influencing factors of nitrogen removal from low-pollution water by constructed wetlands (CW), aerated CW was constructed, and the removal effects of different forms of nitrogen in low-pollution water under different operating conditions were analyzed. The results showed that the removals of TN and NO3--N were positively correlated with hydraulic retention time (HRT), C/N ratio, and temperature (r>0.65, P<0.01) and negatively correlated with DO concentration (r<-0.85, P<0.01). However, there was no significant correlation between the removal of NH4+-N and these factors (P>0.05). The change in aeration rate and HRT adjusted the DO concentration in the wetland, so as to create alternate aerobic and anoxic environments, which was conducive to the nitrification and denitrification process. When the aeration rate was 0.2 L·min-1 and HRT was 1 d, the removal rates of TN, NH4+-N, and NO3--N from the low-pollution water by the aerated CW were 90.15%, 98.25%, and 86.22% respectively, which realized the simultaneous and efficient removal of TN, NH4+-N, and NO3--N. C/N ratio and temperature played important roles in the removal of TN and NO3--N. The TN and NO3--N removal efficiency increased with increasing C/N ratio. When the influent C/N was 5, the removal rates of TN and NO3--N reached their peak, 68.49% and 50.48% respectively, and the TN removal rate was 37.43% higher than that with no influent carbon source (C/N=0). In addition, when the temperature increased from 8-12℃ to 28-32℃, the nitrogen removal rate of the aerated CW increased gradually. Compared with those at low temperatures (8-12℃), the removal rates of TN and NO3--N increased by 29.37% and 50.24%, respectively, at high temperatures (28-32℃), whereas the removal rate of NH4+-N was not affected by C/N ratio and temperature. |
PDF全文下载地址:
https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20211229&flag=1&journal_id=hjkx&year_id=2021