中文关键词
广义相加模型(GAMs)O3浓度变化影响因素交互作用成都市 英文关键词generalized additive models(GAMs)change of O3 concentrationinfluencing factorsinteractive effectsChengdu City |
作者 | 单位 | E-mail | 张莹 | 成都信息工程大学大气科学学院, 高原大气与环境四川省重点实验室, 成都 610225 中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室, 北京 100029 | zhangy881208@126.com | 倪长健 | 成都信息工程大学大气科学学院, 高原大气与环境四川省重点实验室, 成都 610225 | ncj1970@163.com | 冯鑫媛 | 成都信息工程大学大气科学学院, 高原大气与环境四川省重点实验室, 成都 610225 | | 王式功 | 成都信息工程大学大气科学学院, 高原大气与环境四川省重点实验室, 成都 610225 | | 张小玲 | 成都信息工程大学大气科学学院, 高原大气与环境四川省重点实验室, 成都 610225 北京城市气象研究院, 京津冀环境气象预报预警中心, 北京 100089 | | 张家熙 | 成都信息工程大学大气科学学院, 高原大气与环境四川省重点实验室, 成都 610225 | | 李运超 | 成都信息工程大学大气科学学院, 高原大气与环境四川省重点实验室, 成都 610225 | |
|
中文摘要 |
为探究成都市大气环境中气象因子交互作用对臭氧(8h浓度平均最大值,统一用O3表示)浓度变化的影响特征,利用成都市2014~2019年逐日大气污染物资料以及同期的气象资料,采用广义相加模型(generalized additive models,GAMs)分析气象因子对O3浓度变化的影响效应.结果表明,单影响因素的GAMs模型中,O3浓度与最高气温、日照时数、相对湿度、风速、降水量、最大混合层厚度(maximum mixed depth,MMD)和通风系数(ventilation coefficient,VC)间均呈非线性关系,无论全年还是夏季,最高气温、日照时数、MMD和相对湿度对O3浓度影响均较大,值得注意的是,夏季相对湿度和降水量对O3浓度变化的影响较全年更加显著.在构建O3浓度变化的多气象因子GAMs模型中,除平均风速以外的其他气象因子共同作用对O3浓度变化有显著影响,就全年而言,构建的GAMs模型判定系数(R2)为0.849,方差解释率为85.1%,最高气温是全年O3浓度变化的主导影响因素;夏季GAMs模型的R2为0.811,方差解释率为81.3%,而夏季最高气温和MMD同为重要影响因素.GAMs交互效应模型中,就全年而言,最高气温与日照时数、相对湿度、降水量间交互作用,以及日照时数和MMD间交互作用对O3浓度变化影响显著,结合三维可视化图形直观分析气象因子交互作用对O3浓度变化的影响特征,发现强高温+强日照+MMD (2000 m左右)+无降水条件协同作用下有利于O3的生成;就夏季而言,仅最高气温分别与日照时数和VC交互作用对O3浓度的影响显著,夏季强高温+强日照+水平方向小风速有利于近地层O3浓度的生成.运用GAMs模型能够对O3污染的主导气象因子进行识别,并定量化分析气象因子单效应及其交互作用对O3浓度变化的影响特征,对O3浓度污染防控研究具有重要指示意义. |
英文摘要 |
To explore the influence characteristics of the interaction effects between meteorological factors on ozone(O3) concentration in Chengdu, daily air pollutants and meteorological data from 2014 to 2019 were collected. Generalized additive models(GAMs) were adopted to explore the effects of different factors on O3 concentration. The results showed that the relationship between O3 and maximum temperature, sunshine hours, relative humidity, wind speed, precipitation, maximum mixed depth(MMD), and ventilation coefficient(VC) was non-linear. Specifically, the maximum temperature, sunshine hours, MMD, and relative humidity had a significant influence on O3 concentration throughout the year. It is worth noting that the influence of relative humidity and precipitation on O3 concentration during summer was more significant than that for the whole year. In the multi-meteorological factors GAMs of O3 concentration, the meteorological factors mentioned above, except average wind, had significant impacts on O3 concentration change. For the whole year, the judgment coefficient(R2) was 0.849 and the variance explanation rate was 85.1%. The maximum temperature was the most important influencing factor on O3 concentration throughout the year. During summer, corresponding R2 was 0.811 and the explanation rate of variance was 81.3%; however, maximum temperature and MMD were the dominant meteorological factors. In the interaction GAMs, for the whole year, the interaction between maximum temperature and sunshine hours, relative humidity, and precipitation, and the interaction between sunshine hours and MMD had a significant impact on O3 concentrations. The interaction between maximum temperature and sunshine hours played a leading role in changes of O3 concentration. The high temperature+strong radiation+MMD(about 2000 m) +no precipitation were conducive to the formation of O3 concentration, but in summer, only the maximum temperature, sunshine hours, and VC had the most significant effect on the O3 concentration, and strong high temperatures+strong radiation+the little horizontal wind in summer were conducive to the formation of O3 concentration near the surface. In summary, GAMs model can not only be used to identify the dominant influencing factors of O3 pollution, but also quantitatively analyze the influence of single effects and interaction of influencing factors on O3 concentration, which has great significance for the prevention and control of O3 pollution. |
PDF全文下载地址:
https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20211117&flag=1&journal_id=hjkx&year_id=2021