删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

长三角地区气溶胶光学性质与新粒子生成观测

本站小编 Free考研考试/2021-12-31

中文关键词新粒子生成化学组分光学参数MIE理论IMPROVE方法 英文关键词new particle generationchemical constituentoptical coefficientMIE theoryIMPROVE method
作者单位E-mail
杜盈盈上海理工大学能源与动力工程学院, 上海市动力工程多相流动与传热重点实验室, 上海 200093dyyer131421@163.com
陈军上海理工大学能源与动力工程学院, 上海市动力工程多相流动与传热重点实验室, 上海 200093j.chen@usst.edu.cn
张家洛上海理工大学能源与动力工程学院, 上海市动力工程多相流动与传热重点实验室, 上海 200093
甘桂城上海理工大学能源与动力工程学院, 上海市动力工程多相流动与传热重点实验室, 上海 200093
刘瑜存上海理工大学能源与动力工程学院, 上海市动力工程多相流动与传热重点实验室, 上海 200093
上海市环境科学研究院, 国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233
上海祥得环保科技有限公司, 上海 200235
苏明旭上海理工大学能源与动力工程学院, 上海市动力工程多相流动与传热重点实验室, 上海 200093
楼晟荣上海市环境科学研究院, 国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233
周敏上海市环境科学研究院, 国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233
陶士康上海市环境科学研究院, 国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233
乔利平上海市环境科学研究院, 国家环境保护城市大气复合污染成因与防治重点实验室, 上海 200233
中文摘要 2019年5月27日~6月27日对江苏省常州市的气溶胶光学性质参数、颗粒物数浓度和PM2.5组分进行观测,联用扫描电迁移率粒径谱仪(SMPS)、黑碳仪(AE33)、腔衰减相移式单次反照率监测仪(CAPS)、在线离子色谱分析仪(MARGA)和RT-4型有机碳/元素碳(OC/EC)分析仪分析:①新粒子生成期间化学组分与光学参数的变化;②IMPROVE、MIE理论重建消光系数与实测值的闭合性对比.观测期间共有两次明显的新粒子生成事件,粒子粒径从4 nm持续增长到64 nm,在新粒子生成初期硫酸盐贡献较大,生成过程中实测平均消光系数为95.40 Mm-1,IMPROVE模型重建平均消光系数为140.20 Mm-1,MIE理论模型计算平均消光系数为93.54 Mm-1,低于我国城市气溶胶消光系数均值300 Mm-1.本次观测采用多仪器联用的方式从颗粒物数浓度粒径谱、化学组分谱等不同的方面更好地对气溶胶理化性质进行表征. 英文摘要 In a recent field campaign focused on air quality study, aerosol optical properties, particle number concentration, and PM2.5 components were monitored in Changzhou, Jiangsu Province, from May 27 to June 27, 2019. An array of instruments were deployed that included scanning mobility particle size spectrometer (SMPS), aethalometer (AE33), cavity attenuation phase shift single albedo monitor (CAPS-ALB), monitor for aerosols and gases in ambient air (MARGA) and RT-4 organic carbon/elemental carbon (OC/EC) carbon analyzer to study the ① changes in chemical composition and optical parameters of the new particles generated during the campaign period. ② comparison of the aerosol extinction coefficient recorded by these instruments and measured value in the reconstruction of IMPROVE (interagency monitoring of protected visual environment) and the calculated coefficient using MIE theory model were carried out. During the entire campaign, two new particle generation events were observed and also found that the particle size continued to increase from 4 nm to 64 nm. It was monitored that in the initial stage of new particle generation, sulfate contributed greatly. The measured average aerosol extinction coefficient during the period of particle generation, using these instruments was 95.40 Mm-1, while the average aerosol extinction reconstruction using the IMPROVE model was observed to be 140.20 Mm-1. The theoretical calculations based on Mie theory model yielded an average extinction coefficient of 93.54 Mm-1. It was found that the average aerosol extinction in Changzhou is lower than the average value of the urban aerosol extinction coefficient, which is measured to be 300 Mm-1 in China, during this period. The deployment of multiple instruments in a single campaign is more desirable because the combination of all observations helped in better characterization of the physicochemical properties of ambient aerosols from various aspects, including particle size spectrum and chemical composition.

PDF全文下载地址:

https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20200907&flag=1&journal_id=hjkx&year_id=2020

相关话题/上海 动力 能源 传热 工程学院