删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

夏季青岛大气气溶胶中不同形态磷的浓度、来源及沉降通量

本站小编 Free考研考试/2021-12-31

中文关键词总磷溶解态磷溶解态无机磷溶解态有机磷气溶胶干沉降通量 英文关键词total phosphorus(TP)dissolved phosphorus(DP)dissolved inorganic phosphorus(DIP)dissolved organic phosphorus(DOP)aerosoldry deposition flux 中文摘要 利用2016年6~7月在青岛采集的总悬浮颗粒物(TSP)样品,分析了其中不同形态磷的浓度,讨论了夏季气溶胶中总磷(TP)、溶解态磷(DP)、溶解态无机磷(DIP)和溶解态有机磷(DOP)的分布特征及来源,并估算了大气P的沉降通量.结果表明,夏季青岛大气气溶胶中TP的浓度为(49.3±30.6)ng·m-3,其中DP浓度为(15.5±10.4)ng·m-3,对TP的贡献为30.9%±11.0%.DP中以DIP占主导,其贡献平均约为60%.气溶胶中不同形态P的来源分析结果显示,夏季青岛气溶胶中P的来源复杂,受地壳源、人为源、生物质燃烧、农业施肥等多种源的共同影响.其中TP的38%来自土壤源的贡献,农业活动源和工业源的贡献分别为20%左右;DP中DIP主要受到农业活动源及燃烧源的影响,其贡献分别为51%和24%;DOP主要来源于土壤源及农业活动源,其贡献分别为41%和27%.观测期间,大气TP的干沉降通量为(51.7±31.7)μg·(m2·d)-1,其中DP对TP干沉降通量的贡献为23.2%±8.2%.DP中DOP有重要贡献,约为DP干沉降通量的40%.DP的干沉降通量可支持黄海(0.5±0.3)mg·(m2·d)-1浮游植物碳的生产,对新生产力的贡献约为1%. 英文摘要 Total suspended particulate (TSP) samples were collected in Qingdao from June to July 2016. Different forms of phosphorus in these samples-including total phosphorus (TP), dissolved phosphorus (DP), dissolved inorganic phosphorus (DIP), and dissolved organic phosphorus (DOP) were analyzed to investigate their distribution characteristics and sources, as well as their dry deposition fluxes. Results showed that the mass concentration of TP in aerosols was (49.3±30.6) ng·m-3, and the concentration of DP was (15.5±10.4) ng·m-3, accounting for 30.9%±11.0% of TP. DIP dominated in dissolved state P, contributing about 60%. The sources of different forms of P were analyzed, showing that the P in Qingdao aerosols in summer was derived from both crustal and anthropogenic sources, with the latter including biomass burning and agricultural fertilization. TP was mainly derived from soil sources, which contributed 38%, while the contribution of agricultural activities and industrial sources was about 20%. DIP in DP was mainly derived from agricultural activities and combustion sources, with contributions of 51% and 24%, respectively. DOP was mainly derived from soil sources and agricultural activities, contributing 41% and 27% respectively. The dry deposition flux of TP in Qingdao was (51.7±31.7) μg·(m2·d)-1, of which 23.2%±8.2% was the water-soluble fraction. DOP in the total dry deposition flux of DP was non-negligible, accounting for 40%. The atmospheric deposition of soluble P would support phytoplankton carbon production of (0.5±0.3) mg·(m2·d)-1, contributing about 1% to new productivity in the Yellow Sea.

PDF全文下载地址:

https://www.hjkx.ac.cn/hjkx/ch/reader/create_pdf.aspx?file_no=20180908&flag=1&journal_id=hjkx&year_id=2018

鐟曚焦澹橀懓鍐埡閼板啫宕ユ稉鎾茬瑹鐠囧墽婀℃0妯糕偓渚€顣芥惔鎾扁偓浣筋潒妫版埊绱垫潻娆撳櫡鐠у嫭绨搾鍛弿閿涗礁婀痪鍨帳鐠愬綊妲勭拠浼欑磼
2娑撳洨顫掗懓鍐埡閼板啫宕ラ悽闈涚摍娑旓讣绱欐0妯虹氨閵嗕浇顫嬫0鎴欌偓浣稿弿婵傛绁弬娆欑礆閸欏﹤宸婚獮瀵告埂妫版﹫绱濆☉鐢垫磰547閹碘偓闂勩垺鐗�4娑撳洣缍戞稉顏団偓鍐埡閼板啫宕ユ稉鎾茬瑹缁夋垹娲伴妴浣解偓鍐埡閸忣剙鍙$拠鎾呯礄閺€鎸庝笉閼昏精顕㈤弫鏉款劅閿涘鈧拷40缁夊秳绗撴稉姘鳖敋婢诡偓绱欓柌鎴g€虹涵鏇烇紜閵嗕府BA閵嗕礁娴楅梽鍛櫌閸旓紕顢氭竟顐犫偓浣规煀闂傝绱堕幘顓狀敋婢诡偁鈧胶銇炴导姘紣娴f粎顢氭竟顐ょ搼閿涘鈧拷28缁鎮撶粵澶婎劅閸旀稓鏁电涵鏇氱瑩娑撴哎鈧拷1130缁夊秶绮¢崗鍛婃殌閺夋劑鈧倹妫ょ拋鐑樺亶閺勵垳婀℃0妯荤川缂佸啨鈧線顣芥惔鎾冲煕妫版﹫绱濇潻妯绘Ц婢跺秳绡勯弫娆愭綏閿涘奔绔存稉鐚嘔P娴兼艾鎲抽崸鍥у讲濠娐ゅ喕閹劎娈戦棁鈧Ч鍌樷偓锟�
相关话题/中国海洋大学 环境科学 工程学院 生态 农业