删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

溶藻细菌HSY-03对赤潮异弯藻抗氧化系统的影响

本站小编 Free考研考试/2021-12-30

傅丽君1,2,,,
林潇雨3,
杨磊1,2,
黄靖1,2,
李婷2
1. 福建省新型污染物生态毒理效应与控制重点实验室, 莆田 351100;
2. 莆田学院环境与生物工程学院, 莆田 351100;
3. 福建农林大学生命科学学院, 福州 350002
作者简介: 傅丽君(1975-),女,教授,研究方向为海洋环境微生物学,E-mail:lijun_fu@sina.com.
通讯作者: 傅丽君,lijun_fu@sina.com ;
基金项目: 国家自然科学基金资助项目(31400318);福建省科技厅引导性项目(2020Y0089);莆田市科技计划资助项目(2017G2012)


中图分类号: X171.5


Effects of Algicidal Bacterium HSY-03 on Antioxidant Defense System of Heterosigma akashiwo

Fu Lijun1,2,,,
Lin Xiaoyu3,
Yang Lei1,2,
Huang Jing1,2,
Li Ting2
1. Fujian Provincial Key Laboratory of Ecology-Toxicological Effects&Control for Emerging Contaminants, Putian 351100, China;
2. College of Environmental and Biological Engineering, Putian University, Putian 351100, China;
3. College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Corresponding author: Fu Lijun,lijun_fu@sina.com ;

CLC number: X171.5

-->

摘要
HTML全文
(0)(0)
参考文献(29)
相关文章
施引文献
资源附件(0)
访问统计

摘要:为研究溶藻细菌HSY-03(Bacillus sp.)对赤潮异弯藻的溶藻机制,采用不同浓度HSY-03无菌上清液处理赤潮异弯藻藻细胞,测定藻细胞光合色素含量、叶绿素荧光效率、细胞内部活性氧(ROS)水平和抗氧化系统活性变化。结果表明,HSY-03无菌上清液作用24 h之后,赤潮异弯藻叶绿素a含量、类胡萝卜素含量和最大光化学效率(Fv/Fm值)均快速下降,表明藻细胞光合作用受到抑制;处理2 h后ROS含量即上升,至6 h后逐渐下降;处理12 h膜脂化过氧化产物丙二醛(MDA)含量上升,至48 h达到峰值,表明藻细胞内部氧化损伤严重;藻细胞内抗氧化系统响应被激发,抗氧化酶系统超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性不同程度上升,以清除细胞内部ROS。非酶促抗氧化系统谷胱甘肽(GSH)和抗坏血酸(AsA)含量上升,二者协同作用清除ROS。这表明,HSY-03上清液可能通过影响光合作用和作用于藻体的膜结构,引起细胞氧化损伤,最终导致藻细胞死亡。研究结果表明,HSY-03可以作为一种长期环境友好型生物因子有效防治赤潮异弯藻。
关键词: 溶藻细菌/
赤潮异弯藻/
氧化损伤/
抗氧化系统/
赤潮

Abstract:In order toreveal the algicidal mechanism of bacteria HSY-03 (Bacillus sp.) on harmful algae Heterosigma akashiwo, the photosynthetic pigments contents, chlorophyll fluorescence efficiency, photosynthetic parameters, reactive oxygen species (ROS) level and antioxidant systems activities in the algae cells treated with HSY-03 cell-free filtrate were measured. The results showed that chlorophyll a, carotenoids contents and chlorophyll a fluorescence Fv/Fm decreased rapidly after 24 h treatment by HSY-03 cell-free filtrate, indicating that bacterium HSY-03 inhibited the photosynthesis of the algae. The ROS contents increased after 2 h cell-free filtrate treatment then gradually decreased after 6 h treatment. Responses of antioxidant system of algae were stimulated. The activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) increased in different degrees to clear ROS in the algae cells. The activities of non-enzymatic antioxidant systems such as glutathione (GSH) and ascorbic acid (ASA) also increased, and both of them cooperated to eliminate ROS. These results suggested that the algicidal bacterium HSY-03 might affect the photosynthesis and the membrane structure of algae, cause cell oxidative damage, and eventually lead to cell death. Therefore, applying HSY-03 as a long-term and environmentally friendly bio-agent to control the harmful blooms of Heterosigma akashiwo, would be effective and promising.
Key words:algicidal bacterium/
Heterosigma akashiwo/
oxidative stress/
antioxidant systems/
harmful algal bloom.

加载中
Ji N J, Li L, Lin L X, et al. Screening for suitable reference genes for quantitative real-time PCR in Heterosigma akashiwo (Raphidophyceae)[J]. PLoS One, 2015, 10(7):e0132183
Wang M, Chen S B, Zhou W G, et al. Algal cell lysis by bacteria:A review and comparison to conventional methods[J]. Algal Research, 2020, 46:101794
Anderson D M, Cembella A D, Hallegraeff G M. Progress in understanding harmful algal blooms:Paradigm shifts and new technologies for research, monitoring, and management[J]. Annual Review of Marine Science, 2012, 4:143-176
Berdalet E, Fleming L E, Gowen R, et al. Marine harmful algal blooms, human health and wellbeing:Challenges and opportunities in the 21st Century[J]. Journal of the Marine Biological Association of the United Kingdom, 2016, 96(1):61-91
Yu X Q, Cai G J, Wang H, et al. Fast-growing algicidal Streptomyces sp. U3 and its potential in harmful algal bloom controls[J]. Journal of Hazardous Materials, 2018, 341:138-149
van Tol H M, Amin S A, Armbrust E V. Ubiquitous marine bacterium inhibits diatom cell division[J]. The ISME Journal, 2017, 11(1):31-42
Li Y, Zhu H, Lei X Q, et al. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35[J]. Frontiers in Microbiology, 2015, 6:992
Pokrzywinski K L, Tilney C L, Modla S, et al. Effects of the bacterial algicide IRI-160AA on cellular morphology of harmful dinoflagellates[J]. Harmful Algae, 2017, 62:127-135
Zhang F X, Fan Y X, Zhang D Y, et al. Effect and mechanism of the algicidal bacterium Sulfitobacter porphyrae ZFX1 on the mitigation of harmful algal blooms caused by Prorocentrum donghaiense[J]. Environmental Pollution, 2020, 263(Pt A):114475
Tan S, Hu X L, Yin P H, et al. Photosynthetic inhibition and oxidative stress to the toxic Phaeocystis globosa caused by a diketopiperazine isolated from products of algicidal bacterium metabolism[J]. Journal of Microbiology, 2016, 54(5):364-375
谭烁. 海洋溶藻细菌诱导球形棕囊藻程序性死亡研究[D]. 广州:暨南大学, 2016:55-58 Tan S. The study of Phaeocystis globosa cell programmed death induced by marine algicidal bacteria[D]. Guangzhou:Jinan University, 2016:55-58(in Chinese)
Pokrzywinski K L, Tilney C L, Modla S, et al. Effects of the bacterial algicide IRI-160AA on cellular morphology of harmful dinoflagellates[J]. Harmful Algae, 2017, 62:127-135
傅丽君, 林天城, 余晓琪, 等. 抑藻细菌HSY-03的分离、鉴定及对赤潮异弯藻生长的影响[J]. 热带海洋学报, 2016, 35(3):87-93Fu L J, Lin T C, Yu X Q, et al. Isolation and identification of algicidal bacteria HSY-03 and its impact on Heterosigma akashiwo[J]. Journal of Tropical Oceanography, 2016, 35(3):87-93(in Chinese)
Guillard R R, Ryther J H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran[J]. Canadian Journal of Microbiology, 1962, 8:229-239
Jeffrey S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton[J]. Biochemie und Physiologie der Pflanzen, 1975, 167(2):191-194
Strickland J D H, Parsons T R. A Practical Handbook of Seawater Analysis[M]. Ottawa:Fisheries Research Board of Canada, 1968:1-293
Jakubowski W, Bartosz G. 2,7-dichlorofluorescin oxidation and reactive oxygen species:What does it measure?[J]. Cell Biology International, 2000, 24(10):757-760
Zhang H J, Lv J, Peng Y, et al. Cell death in a harmful algal bloom causing species Alexandrium tamarense upon an algicidal bacterium induction[J]. Applied Microbiology and Biotechnology, 2014, 98(18):7949-7958
Carranco Jáuregui M E, Calvo Carrillo M C, Romo F P. Carotenoids and their antioxidant function:A review[J]. Archivos Latinoamericanos de Nutricion, 2011, 61(3):233-241
Saha S K, Moane S, Murray P. Effect of macro- and micro-nutrient limitation on superoxide dismutase activities and carotenoid levels in microalga Dunaliella salina CCAP 19/18[J]. Bioresource Technology, 2013, 147:23-28
Apel K, Hirt H. Reactive oxygen species:Metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55:373-399
Maughan S C, Pasternak M, Cairns N, et al. Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5):2331-2336
Sohal R S, Orr W C. The redox stress hypothesis of aging[J]. Free Radical Biology & Medicine, 2012, 52(3):539-555
Hippeli S, Heiser I, Elstner E F. Activated oxygen and free oxygen radicals in pathology:New insights and analogies between animals and plants[J]. Plant Physiology and Biochemistry, 1999, 37(3):167-178
张化俊, 彭云, 张夙, 等. 溶藻细菌BS01产二异丁氧基苯基对塔玛亚历山大藻生长的影响[J]. 微生物学报, 2015, 55(7):834-842Zhang H J, Peng Y, Zhang S, et al. Algicidal effect of (2-isobutoxyphenyl) amine on Alexandrium tamarense[J]. Acta Microbiologica Sinica, 2015, 55(7):834-842(in Chinese)
Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions[J]. Plant Physiology, 2006, 141(2):391-396
Tan S, Hu X L, Yin P H, et al. Photosynthetic inhibition and oxidative stress to the toxic Phaeocystis globosa caused by a diketopiperazine isolated from products of algicidal bacterium metabolism[J]. Journal of Microbiology, 2016, 54(5):364-375
吴培枫, 韩光耀, 谢丽玲, 等. 溶藻菌Halomona sp. DH-e无菌滤液对东海原甲藻抗氧化系统的影响及急性毒性检验[J]. 海洋环境科学, 2018, 37(2):228-232Wu P F, Han G Y, Xie L L, et al. Effects of the Halomona sp. DH-e aseptic filtrate on the antioxidant enzyme system of Prorocentrum donghaiense and its acute toxicity[J]. Marine Environmental Science, 2018, 37(2):228-232(in Chinese)
胡晓丽. 菌株Y4胞外活性物质对球形棕囊藻的氧化损伤和光合抑制[D]. 广州:暨南大学, 2015:29-34 Hu X L. Photosynthetic inhibition and oxidative stress in the toxic Phaeocystis globosa induced by algicidal substance from Bacillus sp. strain Y4[D]. Guangzhou:Jinan University, 2015:29-34(in Chinese)

相关话题/细胞 系统 海洋 广州 暨南大学