删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

尾状核-眶部内侧前额叶的功能连接与反应性攻击的关系:基于静息态功能磁共振研究

本站小编 Free考研考试/2022-01-01

江琦1(), 侯璐璐1,2, 邱江3, 李长燃1, 王焕贞1
1 西南大学心理学部, 心理健康教育中心, 重庆 400715
2 南京大学社会学院心理学系, 南京 210023
3 西南大学心理学部, 认知与人格教育部重点实验室, 重庆 400715
收稿日期:2016-07-23出版日期:2018-06-01发布日期:2018-04-28
通讯作者:江琦E-mail:jiangqi@swu.edu.cn
作者简介:江琦为共同第一作者。|侯璐璐为共同第一作者。


The relationship between the caudate nucleus-orbitomedial prefrontal cortex connectivity and reactive aggression: A resting-state fMRI study

JIANG Qi1(), HOU Lulu1,2, QIU Jiang3, LI Changran1, WANG Huanzhen1
1 Mental Health Research Center of Southwest University, Faculty of Psychology, Southwest University, Chongqing 400715, China
2 Department of Psychology, School of Social and Behavior Sciences, Nanjing University, Nanjing 210023, China
3 Key Laboratory of Cognition and Personality of Southwest University, Faculty of Psychology, Southwest University, Chongqing 400715, China
Received:2016-07-23Online:2018-06-01Published:2018-04-28
Contact:JIANG Qi E-mail:jiangqi@swu.edu.cn






摘要/Abstract


摘要: 采用修改后的Taylor攻击范式, 将被试为虚拟对手选择的白噪音的惩罚强度作为反应性攻击的指标, 选取眶部内侧前额叶(Orbitomedial Prefrontal Cortex, OMPFC)作为种子点, 考察静息状态下正常人群OMPFC与其他脑区的连接及其与反应性攻击之间的关系。功能连接结果表明, 左侧OMPFC与右侧角回(Angular gyrus)、左侧OMPFC与双侧尾状核(Caudate nucleus)、右侧OMPFC与右侧尾状核的功能连接与反应性攻击显著负相关。格兰杰因果分析的结果进一步表明, 右侧尾状核到右侧OMPFC的效应连接与反应性攻击呈显著负相关, 尤其是与激发条件下的反应性攻击呈显著负相关。这表明, 静息状态下OMPFC与尾状核的连接与反应性攻击有着密切的关系。



图1实验流程图
图1实验流程图


表1双侧OMPFC功能连接结果
脑区 半球 MNI坐标 体素数量 t
种子点:左侧OMPFC
角回 48, -63, 51 51 5.58
尾状核 -12, 15, 3 30 4.85
18, -15, 21 27 4.37
内侧前额叶 33, 48, -6 74 5.66
51, 30, 33 32 4.95
-42, 48, 3 88 4.55
种子点:右侧OMPFC
尾状核 12, 0, 15 54 4.41
内侧前额叶 33, 51, -6 69 5.92
42, 33, 39 48 4.75
-36, 45, 3 45 4.32

表1双侧OMPFC功能连接结果
脑区 半球 MNI坐标 体素数量 t
种子点:左侧OMPFC
角回 48, -63, 51 51 5.58
尾状核 -12, 15, 3 30 4.85
18, -15, 21 27 4.37
内侧前额叶 33, 48, -6 74 5.66
51, 30, 33 32 4.95
-42, 48, 3 88 4.55
种子点:右侧OMPFC
尾状核 12, 0, 15 54 4.41
内侧前额叶 33, 51, -6 69 5.92
42, 33, 39 48 4.75
-36, 45, 3 45 4.32



图2左侧OMPFC-右侧角回的功能连接与反应性攻击相关显著(FC值使用z转化之后的值注:彩图见电子版, 下同
图2左侧OMPFC-右侧角回的功能连接与反应性攻击相关显著(FC值使用z转化之后的值注:彩图见电子版, 下同



图3左侧OMPFC-左侧尾状核的功能连接与反应性攻击相关显著(FC值使用z转化之后的值)
图3左侧OMPFC-左侧尾状核的功能连接与反应性攻击相关显著(FC值使用z转化之后的值)



图4左侧OMPFC-右侧尾状核的功能连接与反应性攻击相关显著(FC值使用z转化之后的值)
图4左侧OMPFC-右侧尾状核的功能连接与反应性攻击相关显著(FC值使用z转化之后的值)



图5右侧OMPFC-右侧尾状核的功能连接与反应性攻击相关显著(FC值使用z转化之后的值)
图5右侧OMPFC-右侧尾状核的功能连接与反应性攻击相关显著(FC值使用z转化之后的值)


表2功能连接值与反应性攻击的相关矩阵
功能连接 反应性攻击
(非激发条件)
反应性攻击
(激发条件)
反应性
攻击(总)
左侧OMPFC-
右侧角回.
-0.43** -0.36* -0.44***
左侧OMPFC-
左侧尾状核
-0.50** -0.46** -0.53***
左侧OMPFC-
右侧尾状核
-0.51** -0.54*** -0.59***
右侧OMPFC-
右侧尾状核
-0.54** -0.55*** -0.61***

表2功能连接值与反应性攻击的相关矩阵
功能连接 反应性攻击
(非激发条件)
反应性攻击
(激发条件)
反应性
攻击(总)
左侧OMPFC-
右侧角回.
-0.43** -0.36* -0.44***
左侧OMPFC-
左侧尾状核
-0.50** -0.46** -0.53***
左侧OMPFC-
右侧尾状核
-0.51** -0.54*** -0.59***
右侧OMPFC-
右侧尾状核
-0.54** -0.55*** -0.61***



图6右侧尾状核→右侧OMPFC的效应连接与反应性攻击相关显著(左为反应性攻击、右为激发条件下的反应性攻击)
图6右侧尾状核→右侧OMPFC的效应连接与反应性攻击相关显著(左为反应性攻击、右为激发条件下的反应性攻击)


表3效应连接值与反应性攻击的相关性统计
效应连接 反应性攻击
(非激发条件)
反应性攻击
(激发条件)
反应
性攻击(总)
左侧OMPFC
→右侧角回
-0.05 0.02 -0.01
左侧OMPFC
→左侧尾状核
0.02 -0.09 -0.04
左侧OMPFC
→右侧尾状核
0.21 -0.01 0.11
右侧角回→
左侧OMPFC
0.08 0.02 0.05
左侧尾状核→
左侧OMPFC
-0.21 -0.16 -0.20
右侧尾状核→
左侧OMPFC
-0.19 -0.17 -0.20
右侧OMPFC
→右侧尾状核
0.24 0.10 0.19
右侧尾状核→
右侧OMPFC
-0.31 -0.33* -0.36*

表3效应连接值与反应性攻击的相关性统计
效应连接 反应性攻击
(非激发条件)
反应性攻击
(激发条件)
反应
性攻击(总)
左侧OMPFC
→右侧角回
-0.05 0.02 -0.01
左侧OMPFC
→左侧尾状核
0.02 -0.09 -0.04
左侧OMPFC
→右侧尾状核
0.21 -0.01 0.11
右侧角回→
左侧OMPFC
0.08 0.02 0.05
左侧尾状核→
左侧OMPFC
-0.21 -0.16 -0.20
右侧尾状核→
左侧OMPFC
-0.19 -0.17 -0.20
右侧OMPFC
→右侧尾状核
0.24 0.10 0.19
右侧尾状核→
右侧OMPFC
-0.31 -0.33* -0.36*







[1] Anderson C. A., & Bushman B. J . ( 2002). Human aggression. Annual Review of Psychology, 53(1), 27-51.
doi: 10.1146/annurev.psych.53.100901.135231URL
[2] Bettencourt B. A., Talley A., Benjamin A. J., & Valentine J . ( 2006). Personality and aggressive behavior under provoking and neutral conditions: A meta-analytic review. Psychological Bulletin, 132(5), 751-777.
doi: 10.1037/0033-2909.132.5.751URLpmid: 16910753
[3] Beyer F., Münte T. F., Erdmann C., & Kr?mer U. M . ( 2014). Emotional reactivity to threat modulates activity in mentalizing network during aggression. Social Cognitive and Affective Neuroscience, 9(10), 1552-1560.
doi: 10.1093/scan/nst146URLpmid: 23986265
[4] Beyer F., Münte T. F., G?ttlich M., & Kr?mer U. M . ( 2015). Orbitofrontal cortex reactivity to angry facial expression in a social interaction correlates with aggressive behavior. Cerebral Cortex, 25(9), 3057-3063.
doi: 10.1093/cercor/bhu101URLpmid: 24842782
[5] Bj?rklund A., & Dunnett S. B . ( 2007). Dopamine neuron systems in the brain: An update. Trends in Neurosciences, 30(5), 194-202.
doi: 10.1016/j.tins.2007.03.006URLpmid: 17408759
[6] Blair, R. J. R . ( 2012). Considering anger from a cognitive neuroscience perspective. Wiley Interdisciplinary Reviews: Cognitive Science, 3(1), 65-74.
doi: 10.1002/wcs.154URLpmid: 22267973
[7] Brett M., Anton J. L., Valabregue R., & Poline J. B . ( 2002). Region of interest analysis using the MarsBar toolbox for SPM 99. NeuroImage, 16(2), S497.
[8] Chen G., Hamilton J. P., Thomason M. E., Gotlib I. H., Saad Z. S., & Cox R. W . ( 2009). Granger causality via vector auto-regression tuned for fMRI data analysis. In Proceedings of the 17th annual scientific meeting and exhibition (Vol. 17, p. 1718). Honolulu, Hawaii.
[9] Coccaro E. F., McCloskey M. S., Fitzgerald D. A., & Phan K. L . ( 2007). Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biological Psychiatry, 62(2), 168-178.
doi: 10.1016/j.biopsych.2006.08.024URLpmid: 17210136
[10] Coccaro E. F., Sripada C. S., Yanowitch R. N., & Phan K. L . ( 2011). Corticolimbic function in impulsive aggressive behavior. Biological Psychiatry, 69(12), 1153-1159.
doi: 10.1016/j.biopsych.2011.02.032URLpmid: 21531387
[11] da Cunha-Bang S., Fisher P. M., Hjordt L. V., Perfalk E., Skibsted A. P., Bock C., .. Knudsen G. M . ( 2017). Violent offenders respond to provocations with high amygdala and striatal reactivity. Social Cognitive and Affective Neuroscience, 12(5), 802-810.
doi: 10.1093/scan/nsx006URLpmid: 28338916
[12] Damasio H., Grabowski T., Frank R., Galaburda A. M., & Damasio A. R . ( 1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264(5162), 1102-1105.
doi: 10.1126/science.8178168URLpmid: 8178168
[13] Davis M., & Whalen P. J . ( 2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6(1), 13-34.
doi: 10.1038/sj.mp.4000812URLpmid: 11244481
[14] D?biec, J. ( 2005). Peptides of love and fear: Vasopressin and oxytocin modulate the integration of information in the amygdala. BioEssays, 27(9), 869-873.
doi: 10.1002/bies.20301URLpmid: 16108061
[15] Finger E. C., Marsh A. A., Mitchell D. G., Reid M. E., Sims C., Budhani S., .. Blair J. R . ( 2008). Abnormal ventromedial prefrontal cortex function in children with psychopathic traits during reversal learning. Archives of General Psychiatry, 65(5), 586-594.
doi: 10.1001/archpsyc.65.5.586URL
[16] Fite P. J., Rubens S. L., Preddy T. M., Raine A., & Pardini D. A . ( 2014). Reactive/proactive aggression and the development of internalizing problems in males: The moderating effect of parent and peer relationships. Aggressive Behavior, 40(1), 69-78.
doi: 10.1002/ab.21498URLpmid: 23868672
[17] Fulwiler C. E., King J. A., & Zhang N. Y . ( 2012). Amygdala- orbitofrontal resting state functional connectivity is associated with trait anger. Neuroreport, 23(10), 606-610.
doi: 10.1097/WNR.0b013e3283551cfcURLpmid: 22617448
[18] Gatzke-Kopp L. M., & Beauchaine T. P . ( 2007). Central nervous system substrates of impulsivity: Implications for the development of attention-deficit/hyperactivity disorder and conduct disorder. In D. Coch, G. Dawson, & K. W. Fischer (Eds.), Human behavior, Learning, and the developing brain: Atypical development (pp. 239-263). New York: Guilford.
[19] Gatzke-Kopp L. M., Beauchaine T. P., Shannon K. E., Chipman J., Fleming A. P., Crowell S. E., .. Aylward E . ( 2009). Neurological correlates of reward responding in adolescents with and without externalizing behavior disorders. Journal of Abnormal Psychology, 118(1), 203-213.
doi: 10.1037/a0014378URLpmid: 19222326
[20] Giancola P. R., & Parrott D. J . ( 2008). Further evidence for the validity of the Taylor aggression paradigm. Aggressive Behavior, 34(2), 214-229.
doi: 10.1002/ab.20235URLpmid: 17894385
[21] Glenn A. L., & Yang Y. L . ( 2012). The potential role of the striatum in antisocial behavior and psychopathy. Biological Psychiatry, 72(10), 817-822.
doi: 10.1016/j.biopsych.2012.04.027URLpmid: 22672927
[22] Gopal A., Clark E., Allgair A., D'Amato C., Furman M., Gansler D. A., & Fulwiler C . ( 2013). Dorsal/ventral parcellation of the amygdala: Relevance to impulsivity and aggression. Psychiatry Research: Neuroimaging, 211(1), 24-30.
doi: 10.1016/j.pscychresns.2012.10.010URLpmid: 23352275
[23] Grahn J. A., Parkinson J. A., & Owen A. M . ( 2009). The role of the basal ganglia in learning and memory: Neuropsychological studies. Behavioural Brain Research, 199(1), 53-60.
doi: 10.1016/j.bbr.2008.11.020URLpmid: 19059285
[24] Greicius M. D., Flores B. H., Menon V., Glover G. H., Solvason H. B., Kenna H., .. Schatzberg A. F . ( 2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5), 429-437.
doi: 10.1016/j.biopsych.2006.09.020URLpmid: 17210143
[25] Hahn A., Stein P., Windischberger C., Weissenbacher A., Spindelegger C., Moser E., .. Lanzenberger R . ( 2011). Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. NeuroImage, 56(3), 881-889.
doi: 10.1016/j.neuroimage.2011.02.064URL
[26] Hamilton J. P., Chen G., Thomason M. E., Schwartz M. E., & Gotlib I. H . ( 2011). Investigating neural primacy in major depressive disorder: Multivariate Granger causality analysis of resting-state fMRI time-series data. Molecular Psychiatry, 16(7), 763-772.
doi: 10.1038/mp.2010.46URLpmid: 2925061
[27] Herpertz S. C., Nagy K., Ueltzh?ffer K., Schmitt R., Mancke F., Schmahl C., & Bertsch K . ( 2017). Brain mechanisms underlying reactive aggression in borderline personality disorder—Sex matters. Biological Psychiatry, 82(4), 257-266.
doi: 10.1016/j.biopsych.2017.02.1175URLpmid: 28388995
[28] Hoptman M. J., D'Angelo D., Catalano D., Mauro C. J., Shehzad Z. E., Kelly A. M. C., .. Milham M. P . ( 2010). Amygdalofrontal functional disconnectivity and aggression in schizophrenia. Schizophrenia Bulletin, 36(5), 1020-1028.
doi: 10.1093/schbul/sbp012URLpmid: 2930349
[29] Huber D., Veinante P., & Stoop R . ( 2005). Vasopressin and oxytocin excite distinct neuronal populations in the central amygdala. Science, 308(5719), 245-248.
doi: 10.1126/science.1105636URLpmid: 15821089
[30] Koenigs M., & Tranel D . ( 2007). Irrational economic decision-making after ventromedial prefrontal damage: Evidence from the ultimatum game. Journal of Neuroscience, 27(4), 951-956.
doi: 10.1523/JNEUROSCI.4606-06.2007URL
[31] Kr?mer U. M., Jansma H., Tempelmann C., & Münte T. F . ( 2007). Tit-for-tat: The neural basis of reactive aggression. NeuroImage, 38(1), 203-211.
doi: 10.1016/j.neuroimage.2007.07.029URLpmid: 17765572
[32] Kr?mer U. M., Riba J., Richter S., & Münte T. F . ( 2011). An fMRI study on the role of serotonin in reactive aggression. PLoS One, 6(11), e27668.
doi: 10.1371/journal.pone.0027668URL
[33] LeDoux, J. ( 1998). Fear and the brain: Where have we been, and where are we going? Biological Psychiatry, 44(12), 1229-1238.
doi: 10.1016/S0006-3223(98)00282-0URLpmid: 9861466
[34] LeDoux, J. E . ( 2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23, 155-184.
doi: 10.1146/annurev.neuro.23.1.155URL
[35] Lee G. P., Bechara A., Adolphs R., Arena J., Meador K. J., Loring D. W., & Smith J. R . ( 1998). Clinical and physiological effects of stereotaxic bilateral amygdalotomy for intractable aggression. The Journal of Neuropsychiatry and Clinical Neurosciences, 10(4), 413-420.
doi: 10.1176/jnp.10.4.413URLpmid: 9813786
[36] Liu Y. L., Teng Z. J., Lan H. Y., Zhang X., & Yao D. Z . ( 2015). Short-term effects of prosocial video games on aggression: An event-related potential study. Frontiers in Behavioral Neuroscience, 9, 193.
doi: 10.3389/fnbeh.2015.00193URLpmid: 4513560
[37] Lotze M., Veit R., Anders S., & Birbaumer N . ( 2007). Evidence for a different role of the ventral and dorsal medial prefrontal cortex for social reactive aggression: An interactive fMRI study. NeuroImage, 34(1), 470-478.
doi: 10.1016/j.neuroimage.2006.09.028URLpmid: 17071110
[38] Maren, S. ( 2001). Neurobiology of Pavlovian fear conditioning. Annual Review of Neuroscience, 24, 897-931.
doi: 10.1146/annurev.neuro.24.1.897URLpmid: 11520922
[39] Mark V. H., Sweet W., & Ervin F . ( 1975). Deep temporal lobe stimulation and destructive lesions in episodically violent temporal lobe epileptics. In W. Fields & W. Sweet (Eds.), Neural bases of violence and aggression (pp. 379-400). St. Louis: Warren H. Greem, Inc.
[40] McCloskey M. S., Phan K. L., Angstadt M., Fettich K. C., Keedy S., & Coccaro E. F . ( 2016). Amygdala hyperactivation to angry faces in intermittent explosive disorder. Journal of Psychiatric Research, 79, 34-41.
doi: 10.1016/j.jpsychires.2016.04.006URLpmid: 27145325
[41] McEwen C. A., & McEwen B. S . ( 2017). Social structure, adversity, toxic stress, and intergenerational poverty: An early childhood model. Annual Review of Sociology, 43, 445-472.
doi: 10.1146/annurev-soc-060116-053252URL
[42] Motzkin J. C., Newman J. P., Kiehl K. A., & Koenigs M . ( 2011). Reduced prefrontal connectivity in psychopathy. Journal of Neuroscience, 31(48), 17348-17357.
doi: 10.1523/JNEUROSCI.4215-11.2011URLpmid: 3311922
[43] Narabayashi H., Nagao T., Saito Y., Yoshida M., & Nagahata M . ( 1963). Stereotaxic amygdalotomy for behavior disorders. Archives of Neurology, 9(1), 1-16.
doi: 10.1001/archneur.1963.00460070011001URLpmid: 13937583
[44] Nelson R. J., & Trainor B. C . ( 2007). Neural mechanisms of aggression. Nature Reviews Neuroscience, 8(7), 536-546.
doi: 10.1038/nrn2174URL
[45] New A. S., Hazlett E. A., Buchsbaum M. S., Goodman M., Mitelman S. A., Newmark R., .. Siever L. J . ( 2007). Amygdala-prefrontal disconnection in borderline personality disorder. Neuropsychopharmacology, 32(7), 1629-1640.
doi: 10.1038/sj.npp.1301283URL
[46] Pietrini P., Guazzelli M., Basso G., Jaffe K., & Grafman J . ( 2000). Neural correlates of imaginal aggressive behavior assessed by positron emission tomography in healthy subjects. American Journal of Psychiatry, 157(11), 1772-1781.
doi: 10.1176/appi.ajp.157.11.1772URL
[47] Ramirez J. M., & Andreu J. M . ( 2006). Aggression, and some related psychological constructs (anger, hostility, and impulsivity) Some comments from a research project. Neuroscience and Biobehavioral Reviews, 30(3), 276-291.
doi: 10.1016/j.neubiorev.2005.04.015URLpmid: 16081158
[48] Riva P., Gabbiadini A., Lauro L. J. R., Andrighetto L., Volpato C., & Bushman B. J . ( 2017). Neuromodulation can reduce aggressive behavior elicited by violent video games. Cognitive, Affective, and Behavioral Neuroscience, 17(2), 452-459.
[49] Rosell D. R., & Siever L. J . ( 2015). The neurobiology of aggression and violence. CNS Spectrums, 20(3), 254-279.
doi: 10.1017/S109285291500019XURLpmid: 25936249
[50] Rudebeck P. H., Bannerman D. M., & Rushworth M. F. S . ( 2008). The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making. Cognitive, Affective, and Behavioral Neuroscience, 8(4), 485-497.
doi: 10.3758/CABN.8.4.485URLpmid: 19033243
[51] Sagvolden T., Johansen E. B., Aase H., & Russell V. A . ( 2005). A dynamic developmental theory of attention- deficit/hyperactivity disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behavioral and Brain Sciences, 28(3), 397-419.
doi: 10.1017/S0140525X05000075URLpmid: 16209748
[52] Sah P., Faber E. S. L., Lopez de Lopez M., & Power J. P . ( 2003). The amygdaloid complex: Anatomy and physiology. Physiological Reviews, 83(3), 803-834.
doi: 10.1152/physrev.00002.2003URLpmid: 12843409
[53] Shannon K. E., Sauder C., Beauchaine T. P., & Gatzke-Kopp L. M . ( 2009). Disrupted effective connectivity between the medial frontal cortex and the caudate in adolescent boys with externalizing behavior disorders. Criminal Justice and Behavior, 36(11), 1141-1157.
doi: 10.1177/0093854809342856URL
[54] Siever, L. J . ( 2008). Neurobiology of aggression and violence. American Journal of Psychiatry, 165(4), 429-442.
doi: 10.1017/S109285291500019XURLpmid: 18346997
[55] Song X. W., Dong Z. Y., Long X. Y., Li S. F., Zuo X. N., Zhu C. Z., .. Zang Y. F . ( 2011). REST: A toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One, 6(9), e25031.
doi: 10.1371/journal.pone.0025031URLpmid: 3176805
[56] Takeuchi H., Taki Y., Hashizume H., Sassa Y., Nagase T., Nouchi R., & Kawashima R . ( 2012). The association between resting functional connectivity and creativity. Cerebral Cortex, 22(12), 2921-2929.
doi: 10.1093/cercor/bhr371URLpmid: 22235031
[57] Taylor, S. P . ( 1967). Aggressive behavior and physiological arousal as a function of provocation and the tendency to inhibit aggression. Journal of Personality, 35(2), 297-310.
doi: 10.1111/j.1467-6494.1967.tb01430.xURLpmid: 6059850
[58] Tzourio-Mazoyer N., Landeau B., Papathanassiou D., Crivello F., Etard O., Delcroix N., .. Joliot M . ( 2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273-289.
doi: 10.1006/nimg.2001.0978URLpmid: 1177199511771995
[59] V?llm B., Richardson P., McKie S., Elliott R., Dolan M., & Deakin B . ( 2007). Neuronal correlates of reward and loss in cluster B personality disorders: A functional magnetic resonance imaging study. Psychiatry Research: Neuroimaging, 156(2), 151-167.
doi: 10.1016/j.pscychresns.2007.04.008URLpmid: 17920821
[60] Wu Q. Z., Li D. M., Kuang W. H., Zhang T. J., Lui S., Huang X. Q., .. Gong Q. Y . ( 2011). Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI. Human Brain Mapping, 32(8), 1290-1299.
doi: 10.1002/hbm.21108URLpmid: 20665717
[61] Yan C. G., & Zang Y. F . ( 2010). DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 413.
doi: 10.3389/fnsys.2010.00013URLpmid: 2889691
[62] Zeng L. L., Shen H., Liu L., Wang L. B., Li B. J., Fang P., .. Hu D. W . ( 2012). Identifying major depression using whole-brain functional connectivity: A multivariate pattern analysis. Brain, 135(5), 1498-1507.
doi: 10.1093/brain/aws059URLpmid: 22418737
[63] Zink C. F., Pagnoni G., Martin M. E., Dhamala M., & Berns G. S . ( 2003). Human striatal response to salient nonrewarding stimuli. Journal of Neuroscience, 23(22), 8092-8097.
doi: 10.1016/S0304-3940(03)00712-2URLpmid: 12954871
[64] Zink C. F., Pagnoni G., Martin-Skurski M. E., Chappelow J. C., & Berns G. S . ( 2004). Human striatal responses to monetary reward depend on saliency. Neuron, 42(3), 509-517.
doi: 10.1016/S0896-6273(04)00183-7URLpmid: 15134646
[65] Zuo X. N., Di Martino A., Kelly C., Shehzad Z. E., Gee D. G., Klein D. F., .. Milham M. P . ( 2010). The oscillating brain: Complex and reliable. NeuroImage, 49(2), 1432-1445.
doi: 10.1016/j.neuroimage.2009.09.037URLpmid: 2856476




[1]蔡惠燕, 苗心, 王鹏飞, 林志为, 王孟成, 杨文登, 麻彦坤, 曾红. 长期戒断海洛因成瘾者冲动性相关脑区的结构及功能特征[J]. 心理学报, 2021, 53(8): 861-874.
[2]李芮, 夏凌翔. 攻击动机对特质愤怒与反应性攻击关系的中介作用:一项纵向研究[J]. 心理学报, 2021, 53(7): 788-797.
[3]金花, 梁紫平, 朱子良, 严世振, 林琳, 艾克旦·艾斯卡尔, 尹建忠, 姜云鹏, 田鑫. 整体运动知觉老化伴随颞中回静息态功能改变[J]. 心理学报, 2021, 53(1): 38-54.
[4]崔芳, 杨佳苗, 古若雷, 刘洁. 右侧颞顶联合区及道德加工脑网络的功能连接预测社会性框架效应:来自静息态功能磁共振的证据[J]. 心理学报, 2021, 53(1): 55-66.
[5]周衡, 何华, 于薇, 王爱君, 张明. 老年人声音诱发闪光错觉的大脑静息态低频振幅[J]. 心理学报, 2020, 52(7): 823-834.
[6]童丹丹, 李文福, 禄鹏, 杨文静, 杨东, 张庆林, 邱江. 科学发明情境中问题提出的脑机制再探[J]. 心理学报, 2020, 52(11): 1253-1265.
[7]孙岩,薄思雨,吕娇娇. 认知重评和表达抑制情绪调节策略的脑网络分析:来自EEG和ERP的证据[J]. 心理学报, 2020, 52(1): 12-25.





PDF全文下载地址:

http://journal.psych.ac.cn/xlxb/CN/article/downloadArticleFile.do?attachType=PDF&id=4195
相关话题/心理 种子 统计 实验 西南大学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 撞衫对消费者产品处置意向的 影响及其心理机制
    宫秀双;蒋晶(中国人民大学商学院,北京100872)收稿日期:2017-03-09出版日期:2018-03-25发布日期:2018-02-01通讯作者:蒋晶,E-mail:jiangjing@rmbs.ruc.edu.cnE-mail:E-mail:jiangjing@rmbs.ruc.edu.cn ...
    本站小编 Free考研考试 2022-01-01
  • 《心理学报》2017年度审稿专家名录
    出版日期:2018-01-25发布日期:2018-01-02基金资助:reviewersin2017Online:2018-01-25Published:2018-01-02Supportedby:摘要/Abstract摘要:参考文献相关文章15[1]中国心理学会.第二十二届全国心理学学术会议在杭州 ...
    本站小编 Free考研考试 2022-01-01
  • 北京放射性核束装置首个后加速ISOL束流实验完成
    近日,原子能院科研人员首次在北京放射性核束装置(BRIF)上进行了后加速ISOL(在线同位素分离)束的验证性实验,验证了北京放射性核束装置后加速ISOL束开展物理实验的方法与技术,为后续开展奇异原子核物理实验奠定重要基础,对国际同类装置开展相关实验研究有重要借鉴意义。 该研究结果发表于我国SCI期 ...
    本站小编 Free考研考试 2022-01-01
  • 我国核数据宏观基准检验实验数据首次被国际原子能机构收录
    日前,由原子能院中国核数据中心(核数据重点实验室)完成的宏观基准检验实验研究成果被国际原子能机构(IAEA)国际合作项目CoNDERC(《核辐射特性实验数据汇编项目》)正式收录。这是我国核数据宏观基准检验实验数据首次被IAEA收录,对提高我国核数据宏观基准检验能力、提升我国核数据的国际影响力起到了积 ...
    本站小编 Free考研考试 2022-01-01
  • 北京放射性核束装置开展首次实验:发现钠20原子核存在奇异新衰变模式
    近日,原子能院核物理所核天体物理创新团队依托北京放射性核束装置BRIF(Beijing Radioactive Ion-beam Facility),首次发现20Na原子核存在奇异--衰变新模式。1月29日,该研究结果被国际核物理领域著名学术期刊 Physic ...
    本站小编 Free考研考试 2022-01-01
  • 中国实验快堆春节期间再次并网发电
    2月15日18点03分,随着主控室电功率表示数不断增加,中国实验快堆再次并网发电并开始高功率运行。开堆准备及运行期间,中核集团副总经理申彦峰,原子能院院长薛小刚、常务副院长李卓群到现场检查和指导工作。 作为我国第一座钠冷实验快堆,中国实验快堆承担着多项重大任务,其高功率运行也是掌握快堆技术、培养人 ...
    本站小编 Free考研考试 2022-01-01
  • 原子能院100MeV回旋加速器首次开展农作物辐照育种实验
    近日,原子能院与沈阳农业大学紧密合作,在100MeV强流质子回旋加速器上首次开展农作物种子辐照育种实验研究,这也是国内首次利用中能质子束进行甜瓜种子辐照育种实验。此次利用中能质子束技术辐照诱变甜瓜种子,期望能够构建基于质子束诱变技术的甜瓜育种新方法和新途径,创新甜瓜种质新资源。 质子辐射育种具有清 ...
    本站小编 Free考研考试 2022-01-01
  • 中国实验快堆完成首循环试运行
    7月31日21点54分,中国实验快堆主控室,随着当值值长按下“手动紧急停堆按钮”,反应堆按既定程序安全停堆,中国实验快堆“100%功率手动紧急停堆试验”圆满完成。这标志着中国实验快堆功率试验阶段调试试验全部结束,验证了反应堆在稳定工况和预期的瞬态运行工况下,其性能符合设计要求,也标志着中国实验快堆第 ...
    本站小编 Free考研考试 2022-01-01
  • 中国实验快堆设备国产化项目取得重要进展
    7月31日,中国实验快堆一回路主泵电机鉴定大纲顺利通过评审。这是中国实验快堆主泵电机备品备件国产化项目的关键环节,标志着主泵电机从设计研发阶段进入制造试验阶段;这也是中国实验快堆打破国外技术壁垒,掌握核心设备技术研发能力的重要一步,对中国实验快堆设备国产化建设具有重大意义。 设备国产化项目,是将中 ...
    本站小编 Free考研考试 2022-01-01
  • 核数据重点实验室完成重要核素反应截面测量与评价任务
    7月16日,经过连续23天的累积辐照和测量,核数据重点实验室成功完成重要测量样品辐照实验,标志着重要核素(n,2n)反应截面测量与评价任务圆满完成,这也是实验室十三五期间的重点攻关任务。核数据重点实验室于2019年已提前完成该数据十三五技术指标 ...
    本站小编 Free考研考试 2022-01-01