
1 辽宁师范大学心理学院, 大连 116029
2 大连医科大学基础医学院, 大连 116044
收稿日期:
2017-04-06出版日期:
2018-06-10发布日期:
2018-04-28通讯作者:
胡金生E-mail:hu_jinsheng@126.com基金资助:
* 辽宁省****基金;辽宁省人文社科重点研究基地项目;辽宁省儿童青少年健康人格评定与培养协同创新中心资助项目支持Audiovisual temporal integration in autism spectrum disorders
LI Taotao1, HU Jinsheng1(
1 Department of Psychology, Liaoning Normal University, Dalian 116029, China
2 College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
Received:
2017-04-06Online:
2018-06-10Published:
2018-04-28Contact:
HU Jinsheng E-mail:hu_jinsheng@126.com摘要/Abstract
摘要: 视听时间整合是指个体对一定时间间隔内输入的视听刺激进行表征的过程, 是视听整合的重要机制。孤独症谱系障碍者的视听时间整合存在缺陷, 主要表现为4个方面:视听时间整合窗口较正常个体更宽、更对称; 快速视听时间再校准能力不足; 听觉时间线索对其视觉搜索促进作用弱; 言语刺激的视听时序知觉敏感性低。目前使用的研究任务多样, 如声音诱发闪光错觉和“pip-pop”任务从内隐角度探究视听整合中的时间机制, 同时性判断、时序判断和优先注视任务主要用于跨通道时序知觉的研究。相关理论从神经加工异常、先验经验不足和视听通道的相互作用等角度解释了其缺陷。未来需要进一步提高研究生态效度, 整合理论解释, 精确量化诊断指标, 同时开发有实效的干预策略。
图/表 1

图1正常人和ASD者的时间窗结构 (资料来源:Stevenson et al., 2016)

参考文献 57
[1] | Altieri, N. (2014). Multisensory integration, learning, and the predictive coding hypothesis. Frontiers in Psychology, 5( 2), 257. doi: 10.3389/fpsyg.2014.00257URLpmid: 2471588424715884 |
[2] | American Psychiatric Association.(2013). Diagnostic and statistical manual of mental disorders (DSM-5?) (5th ed.). Washington, DC: American Psychiatric Publishing. |
[3] | Baum S. H., Stevenson R. A., & Wallace M. T . ( 2015). Testing sensory and multisensory function in children with autism spectrum disorder. Journal of Visualized Experiments, ( 98), e52677. doi: 10.3791/52677URLpmid: 25938209 |
[4] | Beauchamp M. S., Nath A. R., & Pasalar S . ( 2010). fMRI-guided transcranial magnetic stimulation reveals that the superior temporal sulcus is a cortical locus of the Mcgurk effect. Journal of Neuroscience, 30( 7), 2414-2417. doi: 10.1523/JNEUROSCI.4865-09.2010URLpmid: 20164324 |
[5] | Bebko J. M., Weiss J. A., Demark J. L., & Gomez P . ( 2006). Discrimination of temporal synchrony in intermodal events by children with autism and children with developmental disabilities without autism. Journal of Child Psychology and Psychiatry, 47( 1), 88-98. doi: 10.1111/j.1469-7610.2005.01443.xURLpmid: 16405645 |
[6] | Binder, M. (2015). Neural correlates of audiovisual temporal processing-Comparison of temporal order and simultaneity judgments. Neuroscience, 300, 432-447. doi: 10.1016/j.neuroscience.2015.05.011URLpmid: 25982561 |
[7] | Brock J., Brown C. C., Boucher J., & Rippon G . ( 2002). The temporal binding deficit hypothesis of autism. Development and Psychopathology, 14( 2), 209-224. |
[8] | Collignon O., Charbonneau G., Peters F., Nassim M., Lassonde M., Lepore F., .. Bertone A . ( 2013). Reduced multisensory facilitation in persons with autism. Cortex, 49( 6), 1704-1710. doi: 10.1016/j.cortex.2012.06.001URLpmid: 22818902 |
[9] | Colonius, H., & Diederich, A. (2004). Multisensory interaction in saccadic reaction time: A time-window- of-integration model. Journal of Cognitive Neuroscience, 16( 6), 1000-1009. doi: 10.1162/0898929041502733URLpmid: 15298787 |
[10] | Cuppini C., Ursino M., Magosso E., Ross L. A., Foxe J. F., & Molholm S . ( 2017). A computational analysis of neural mechanisms underlying the maturation of multisensory speech integration in neurotypical children and those on the autism spectrum. Frontiers in Human Neuroscience, 11, 518. doi: 10.3389/fnhum.2017.00518URLpmid: 5670153 |
[11] | de Boer-Schellekens L., Eussen M., & Vroomen J . ( 2013). Diminished sensitivity of audiovisual temporal order in autism spectrum disorder. Frontiers in Integrative Neuroscience, 7, 8. doi: 10.3389/fnint.2013.00008URLpmid: 23450453 |
[12] | de Boer-Schellekens L., Keetels M., Eussen M., & Vroomen J . ( 2013). No evidence for impaired multisensory integration of low-level audiovisual stimuli in adolescents and young adults with autism spectrum disorders. Neuropsychologia, 51( 14), 3004-3013. doi: 10.1016/j.neuropsychologia.2013.10.005URLpmid: 24157536 |
[13] | Dinstein I., Heeger D. J., Lorenzi L., Minshew N. J., Malach R., & Behrmann M . ( 2012). Unreliable evoked responses in autism. Neuron, 75( 6), 981-991. doi: 10.1016/j.neuron.2012.07.026URLpmid: 22998867 |
[14] | Donohue S. E., Woldorff M. G., & Mitroff S. R . ( 2010). Video game players show more precise multisensory temporal processing abilities. Attention, Perception, & Psychophysics, 72( 4), 1120-1129. doi: 10.3758/APP.72.4.1120URLpmid: 20436205 |
[15] | Doyle-Thomas K. A. R., Goldberg J., Szatmari P., & Hall, G. B. C. (2013). Neurofunctional underpinnings of audiovisual emotion processing in teens with autism spectrum disorders. Frontiers in Psychiatry, 4, 48. doi: 10.3389/fpsyt.2013.00048URLpmid: 23750139 |
[16] | Foss-Feig J. H., Kwakye L. D., Cascio C. J., Burnette C. P., Kadivar H., Stone W. L., & Wallace M. T . ( 2010). An extended multisensory temporal binding window in autism spectrum disorders. Experimental Brain Research, 203( 2), 381-389. doi: 10.1007/s00221-010-2240-4URL |
[17] | Fujisaki W., Shimojo S., Kashino M., & Nishida S. Y . ( 2004). Recalibration of audiovisual simultaneity. Nature Neuroscience, 7( 7), 773-778. doi: 10.1038/nn1268URLpmid: 15195098 |
[18] | Glessner J. T., Wang K., Cai G. Q., Korvatska O., Kim C. E., Wood S., .. Hakonarson H . ( 2009). Autism genome- wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459( 7246), 569-573. doi: 10.1038/nature07953URLpmid: 19404257 |
[19] | Greenfield K., Ropar D., Smith A. D., Carey M., & Newport R . ( 2015). Visuo-tactile integration in autism: Atypical temporal binding may underlie greater reliance on proprioceptive information. Molecular Autism, 6( 1), 51. doi: 10.1186/s13229-015-0045-9URLpmid: 4570750 |
[20] | Grossman R. B., Steinhart E., Mitchell T., & McIlvane W . ( 2015). “Look who's talking!” Gaze patterns for implicit and explicit audio-visual speech synchrony detection in children with high-functioning autism. Autism Research, 8( 3), 307-316. doi: 10.1002/aur.1447URLpmid: 25620208 |
[21] | Hairston W. D., Burdette J. H., Flowers D. L., Wood F. B., & Wallace M. T . ( 2005). Altered temporal profile of visual-auditory multisensory interactions in dyslexia. Experimental Brain Research, 166( 3-4), 474-480. doi: 10.1007/s00221-005-2387-6URLpmid: 16028030 |
[22] | Happé, F., & Frith, U. (2006). The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. Journal of Autism and Developmental Disorders, 36( 1), 5-25. doi: 10.1007/s10803-005-0039-0URLpmid: 16450045 |
[23] | Hillock A. R., Powers A. R., & Wallace M. T . ( 2011). Binding of sights and sounds: Age-related changes in multisensory temporal processing. Neuropsychologia, 49( 3), 461-467. doi: 10.1016/j.neuropsychologia.2010.11.041URLpmid: 21134385 |
[24] | Hillock-Dunn, A., & Wallace, M. T . ( 2012). Developmental changes in the multisensory temporal binding window persist into adolescence. Developmental Science, 15( 5), 688-696. doi: 10.1111/j.1467-7687.2012.01171.xURLpmid: 4013750 |
[25] | Hocking, J., & Price, C. J . ( 2008). The role of the posterior superior temporal sulcus in audiovisual processing. Cerebral Cortex, 18( 10), 2439-2449. doi: 10.1093/cercor/bhn007URLpmid: 2536697 |
[26] | Kwakye L. D., Foss-Feig J. H., Cascio C. J., Stone W. L., & Wallace M. T . ( 2011). Altered auditory and multisensory temporal processing in autism spectrum disorders. Frontiers in Integrative Neuroscience, 4, 129. doi: 10.3389/fnint.2010.00129URLpmid: 3024004 |
[27] | Laasonen M., Service E., & Virsu V. J . ( 2001). Temporal order and processing acuity of visual, auditory, and tactile perception in developmentally dyslexic young adults. Cognitive, Affective, & Behavioral Neuroscience, 1( 4), 394-410. doi: 10.3758/CABN.1.4.394URLpmid: 12467091 |
[28] | Lewkowicz, D. J., & Flom, R. (2014). The audiovisual temporal binding window narrows in early childhood. Child Development, 85( 2), 685-694. doi: 10.1111/cdev.12142URLpmid: 23888869 |
[29] | Megnin O., Flitton A., Jones C. R. G., de Haan M., Baldeweg T., & Charman T . ( 2012). Audiovisual speech integration in autism spectrum disorders: ERP evidence for atypicalities in lexical-semantic processing. Autism Research, 5( 1), 39-48. doi: 10.1002/aur.231URLpmid: 3586407 |
[30] | Noel J. P., De Niear M. A., Stevenson R., Alais D., & Wallace M. T . ( 2017). Atypical rapid audio-visual temporal recalibration in autism spectrum disorders. Autism Research, 10( 1), 121-129. doi: 10.1002/aur.1633URLpmid: 27156926 |
[31] | O’Connor, K. (2012). Auditory processing in autism spectrum disorder: A review. Neuroscience & Biobehavioral Reviews, 36( 2), 836-854. doi: 10.1016/j.neubiorev.2011.11.008URLpmid: 22155284 |
[32] | Patten E., Watson L. R., & Baranek G. T . ( 2014). Temporal synchrony detection and associations with language in young children with ASD. Autism Research and Treatment, 2014, Article ID 678346. doi: 10.1155/2014/678346URLpmid: 4295130 |
[33] | Pellicano, E., & Burr, D. (2012). When the world becomes ‘too real’: A Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16( 10), 504-510. doi: 10.1016/j.tics.2012.08.009URLpmid: 22959875 |
[34] | Powers A. R., Hevey M. A., & Wallace M. T . ( 2012). Neural correlates of multisensory perceptual learning. Journal of Neuroscience, 32( 18), 6263-6274. doi: 10.1523/JNEUROSCI.6138-11.2012URLpmid: 3366559 |
[35] | Powers A. R., Hillock A. R., & Wallace M. T . ( 2009). Perceptual training narrows the temporal window of multisensory binding. Journal of Neuroscience, 29( 39), 12265-12274. doi: 10.1523/JNEUROSCI.3501-09.2009URLpmid: 2771316 |
[36] | Rippon G., Brock J., Brown C., & Boucher J . ( 2007). Disordered connectivity in the autistic brain: Challenges for the ‘new psychophysiology’. International Journal of Psychophysiology, 63( 2), 164-172. doi: 10.1016/j.ijpsycho.2006.03.012URLpmid: 16820239 |
[37] | Rubenstein, J. L. R., & Merzenich, M. M . ( 2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain and Behavior, 2( 5), 255-267. doi: 10.1034/j.1601-183X.2003.00037.xURLpmid: 14606691 |
[38] | Russo N., Foxe J. J., Brandwein A. B., Altschuler T., Gomes H., & Molholm S . ( 2010). Multisensory processing in children with autism: High-density electrical mapping of auditory-somatosensory integration. Autism Research, 3( 5), 253-267. doi: 10.1002/aur.152URLpmid: 20730775 |
[39] | Russo N., Zecker S., Trommer B., Chen J. L., & Kraus N . ( 2009). Effects of background noise on cortical encoding of speech in autism spectrum disorders. Journal of Autism and Developmental Disorders, 39( 8), 1185-1196. doi: 10.1007/s10803-009-0737-0URLpmid: 19353261 |
[40] | Shams L., Kamitani Y., & Shimojo S . ( 2002). Visual illusion induced by sound. Cognitive Brain Research, 14( 1), 147-152. doi: 10.1016/S0926-6410(02)00069-1URLpmid: 12063138 |
[41] | Shi Z. H., Chen L. H., & Müller H. J . ( 2010). Auditory temporal modulation of the visual Ternus effect: The influence of time interval. Experimental Brain Research, 203( 4), 723-735. doi: 10.1007/s00221-010-2286-3URLpmid: 20473749 |
[42] | Stevenson R. A., Fister J. K., Barnett Z. P., Nidiffer A. R., & Wallace M. T . ( 2012). Interactions between the spatial and temporal stimulus factors that influence multisensory integration in human performance. Experimental Brain Research, 219( 1), 121-137. doi: 10.1007/s00221-012-3072-1URLpmid: 3526341 |
[43] | Stevenson R. A., Segers M., Ferber S., Barense M. D., Camarata S., & Wallace M. T . ( 2016). Keeping time in the brain: Autism spectrum disorder and audiovisual temporal processing. Autism Research, 9( 7), 720-738. doi: 10.1002/aur.1566URLpmid: 26402725 |
[44] | Stevenson R. A., Siemann J. K., Brown S. T., Woynaroski T. G., Segers M., Bebko J., & Wallace M . ( 2013). Atypical multisensory integration in Autism Spectrum Disorders: Cascading impacts of altered temporal processing. Multisensory Research, 26, 25. doi: 10.1163/22134808-000S0015URL |
[45] | Stevenson R. A., Siemann J. K., Schneider B. C., Eberly H. E., Woynaroski T. G., Camarata S. M., & Wallace M. T . ( 2014). Multisensory temporal integration in autism spectrum disorders. Journal of Neuroscience, 34( 3), 691-697. doi: 10.1523/JNEUROSCI.3615-13.2014URLpmid: 3891950 |
[46] | Stevenson R. A., Siemann J. K., Woynaroski T. G., Schneider B. C., Eberly H. E., Camarata S. M., & Wallace M. T . ( 2014). Evidence for diminished multisensory integration in autism spectrum disorders. Journal of Autism and Developmental Disorders, 44( 12), 3161-3167. doi: 10.1007/s10803-014-2179-6URLpmid: 25022248 |
[47] | Stevenson R. A., VanDerKlok R. M., Pisoni D. B., & James T. W . ( 2011). Discrete neural substrates underlie complementary audiovisual speech integration processes. NeuroImage, 55( 3), 1339-1345. doi: 10.1016/j.neuroimage.2010.12.063URLpmid: 3057325 |
[48] | Stevenson, R. A., & Wallace, M. T . ( 2013). Multisensory temporal integration: Task and stimulus dependencies. Experimental Brain Research, 227( 2), 249-261. doi: 10.1007/s00221-013-3507-3URL |
[49] | Stevenson R. A., Zemtsov R. K., & Wallace M. T . ( 2012). Individual differences in the multisensory temporal binding window predict susceptibility to audiovisual illusions. Journal of Experimental Psychology: Human Perception and Performance, 38( 6), 1517-1529. doi: 10.1037/a0027339URLpmid: 3795069 |
[50] | Turi M., Karaminis T., Pellicano E., & Burr D . ( 2016). No rapid audiovisual recalibration in adults on the autism spectrum. Scientific Reports, 6, 21756. doi: 10.1038/srep21756URLpmid: 4761981 |
[51] | van der Burg E., Alais D., & Cass J . ( 2013). Rapid recalibration to audiovisual asynchrony. Journal of Neuroscience, 33( 37), 14633-14637. doi: 10.1523/JNEUROSCI.1182-13.2013URLpmid: 24027264 |
[52] | van der Burg E., Olivers C. N. L., Bronkhorst A. W., & Theeuwes J . ( 2008). Pip and pop: Nonspatial auditory signals improve spatial visual search. Journal of Experimental Psychology: Human Perception and Performance, 34( 5), 1053-1065. doi: 10.1037/0096-1523.34.5.1053URLpmid: 18823194 |
[53] | Vatakis, A., & Spence, C. (2006). Audiovisual synchrony perception for music, speech, and object actions. Brain Research, 1111( 1), 134-142. doi: 10.1016/j.brainres.2006.05.078URLpmid: 16876772 |
[54] | Vroomen J., Keetels M., De Gelder B., & Bertelson P . ( 2004). Recalibration of temporal order perception by exposure to audio-visual asynchrony. Cognitive Brain Research, 22( 1), 32-35. doi: 10.1016/j.cogbrainres.2004.07.003URLpmid: 15561498 |
[55] | Vroomen, J., & Keetels, M. (2010). Perception of intersensory synchrony: A tutorial review. Attention, Perception, & Psychophysics, 72( 4), 871-884. doi: 10.3758/APP.72.4.871URLpmid: 20436185 |
[56] | Wallace, M. T., & Stevenson, R. A . ( 2014). The construct of the multisensory temporal binding window and its dysregulation in developmental disabilities. Neuropsychologia, 64, 105-123. doi: 10.1016/j.neuropsychologia.2014.08.005URLpmid: 25128432 |
[57] | Williams, E. L., & Casanova, M. F . ( 2010). Autism and dyslexia: A spectrum of cognitive styles as defined by minicolumnar morphometry. Medical Hypotheses, 74( 1), 59-62. doi: 10.1016/j.mehy.2009.08.003URLpmid: 19713047 |
相关文章 11
[1] | 王琳, 王志丹, 王泓婧. 孤独症儿童动作发展障碍的神经机制[J]. 心理科学进展, 2021, 29(7): 1239-1250. |
[2] | 毕小彬, 范晓壮, 米文丽, 贺荟中. 高风险婴儿前瞻性纵向研究与孤独症谱系障碍早期识别[J]. 心理科学进展, 2020, 28(3): 443-455. |
[3] | 尹华站, 崔晓冰, 白幼玲, 曹格格, 邓靖歆, 李丹. 时间信息加工与信息加工时间特性双视角下的重要时间参数及其证据[J]. 心理科学进展, 2020, 28(11): 1853-1864. |
[4] | 荆伟, 王庭照. 双通路理论视角下孤独症谱系障碍者的视线加工障碍[J]. 心理科学进展, 2019, 27(3): 508-521. |
[5] | 赵晓宁, 胡金生, 李松泽, 刘西, 刘琼阳, 吴娜. 基于眼动研究的孤独症谱系障碍早期预测[J]. 心理科学进展, 2019, 27(2): 301-311. |
[6] | 白晓宇, TawandaS.Mutusva, 祝卓宏. PEAK关系训练系统:孤独症语言障碍康复的新方法[J]. 心理科学进展, 2019, 27(11): 1896-1905. |
[7] | 巨兴达, 宋伟, 徐婧. CHRM3基因与孤独症谱系障碍[J]. 心理科学进展, 2018, 26(12): 2141-2152. |
[8] | 王分分, 祝卓宏. 言语行为的关系框架理论视角: 孤独症谱系障碍的新探索[J]. 心理科学进展, 2017, 25(8): 1321-1326. |
[9] | 王琦;胡金生;李骋诗;李松泽. 孤独症谱系障碍者的情绪韵律识别[J]. 心理科学进展, 2016, 24(9): 1377-1390. |
[10] | 李松泽; 胡金生; 李骋诗; 王琦; 刘淑清; 康晓东; 崔丽 . 孤独症谱系障碍者的视觉−空间工作记忆缺陷及脑机制[J]. 心理科学进展, 2016, 24(7): 1050-1064. |
[11] | 文小辉;刘强;孙弘进 等. 多感官线索整合的理论模型[J]. 心理科学进展, 2009, 17(4): 659-666. |
PDF全文下载地址:
http://journal.psych.ac.cn/xlkxjz/CN/article/downloadArticleFile.do?attachType=PDF&id=4341