单分子磁体是一类具有强易轴各向异性的分子纳米磁体,可以在特定温度以下表现出磁滞等类似磁体的行为,是一种超顺磁态。分子中仅含有一个金属离子的单分子磁体通常被称为单离子磁体,近20年来,人们通常可以使用各向异性很强的稀土离子来构筑单离子磁体。稀土离子配合物往往具有较低的对称性,因此很难从几何结构上确定稀土离子的磁各向异性轴和4f电子云的结构。
北京大学化学与分子工程学院高松教授、王炳武副教授和蒋尚达副研究员等近些年设计合成了大量稀土单离子磁体,并发展了多种方法研究稀土离子的磁轴取向。2010年该课题组报道了基于双酮配体的稀土镝单离子磁体(Angew. Chem., Int. Ed., 2010, 49, 7448)。经过系统研究,蒋尚达发现在某些特殊对称性下,晶体和分子的磁各向异性轴严格重合,通过单晶转动实验确定晶体的磁化率张量,进而求得晶体和分子的各向异性轴(Jiang SD., Wang BW., Gao S. (2014) Advances in Lanthanide Single-Ion Magnets. In: Gao S. (eds) Molecular Nanomagnets and Related Phenomena. Structure and Bonding, vol 164. Springer, Berlin, Heidelberg)。2015年,蒋尚达和高松通过该方法首次确定了双酮类稀土单离子磁体的磁易轴取向,结果显示实验结果与量子化学从头算以及晶体场分析的结果非常接近,该工作发表在英国皇家化学会的旗舰杂志《化学科学》上(Chem. Sci., 2015, 6, 4587)。
通过单晶磁化率方法测定的磁轴方向(Chem. Sci., 2015, 6, 4587)
但是这种单晶磁化率测试的手段具有明显的局限性,只适用于极个别的对称性情况,对于分子与晶体的各向异性轴不重合的情况下,无法严格确定分子磁轴取向(Chem.-Eur. J., 2013,19, 13726)。为解决此问题,蒋尚达与丹麦Aarhus大学的Jacob Overgaard博士等合作,采用极化中子衍射(Polarized Neutron Diffraction)的方法,解决了任意空间群中低对称性磁性离子的磁轴取向测定问题,该工作以封面文章的形式发表在《欧洲化学》杂志上,并被选为VIP文章(Chem.-Eur. J., 2018, 24, 16576)。
通过极化中子散射方法测定的磁轴方向(Chem.-Eur. J., 2018, 24, 16576)
人们普遍认为稀土离子的强各向异性主要来自其未被淬灭的一阶轨道角动量,通过旋轨耦合作用使得金属离子的基态电子云结构表现出各向异性,但这种电子云的各向异性究竟是什么形状,其取向与磁各向异性方向有何关联,人们仍不清楚。为此蒋尚达与Overgaard和澳大利亚墨尔本大学理论化学家Alessandro Soncini教授等合作,在日本Spring-8同步辐射线站上以0.35埃的分辨率精细测定了基于双酮配体的稀土镝单离子磁体的4f电子云结构。该工作具有很高的实验难度,因为在Dy3+离子所有的63个电子中,仅有4f轨道上的9个电子表现为非球形并且被外部满壳层的4d和4s电子云所屏蔽,而其余的54个电子均表现为球形结构,相当于在阳光充沛的白天观测星空。实验结果显示在这类双酮单离子磁体中,Dy3+离子的电子云呈现压扁(oblate)的形状,与理论物理学家的预期一致,并且通过电子云的形状亦可模拟出基态波函数的组成,基于该研究我们可以得出结论:4f电子云的各向异性形状由于其波函数的混合并不具有严格的单轴对称性,但Dy3+离子在强单轴各向异性时压扁型结构可以近似为椭球型,该椭球的对称轴与稀土离子的磁轴较为接近。该工作最近发表在《自然-化学》杂志上(https://doi.org/10.1038/s41557-019-0387-6),第一作者为高琛博士,他在高松课题组获得博士学位后前往Aarhus大学与Overgaard合作进行博士后研究,通讯作者为蒋尚达、Alessandro Soncini和Jacob Overgaard。
通过高分辨X射线衍射方法测定4f电子云结构
以上工作得到了国家自然科学基金委青年科学基金、优秀青年科学基金、创新群体项目以及科技部国家重点研发计划的支持。
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
稀土离子的4f电子云是什么形状?
本站小编 Free考研/2020-04-10
相关话题/结构 化学
深研院新材料学院潘锋、郑家新在《国家科学评论》发文 阐述“结构基元”在研发锂电池正极材料中的“基因”作用
能源和环境是人类赖以生存的物质基础,也是当今时代面临的两大问题。能源研究的核心是研发新型能源材料,提高能源利用效率和储能容量。锂离子电池作为清洁能源,被广泛应用于人工智能、电动汽车、无人机等前沿科技领域。然而,当前锂离子电池的能量密度、稳定性能和倍率性能,还远远不能满足科技快速发展的需要。手机电池爆 ...北京大学通知公告 本站小编 Free考研 2020-04-10新材料学院潘锋团队在Nature Communications发文阐述锂电池材料充放电时结构演化和稳定性机理
锂离子电池近年来在手机、电动车和大规模储能广泛应用,对其改进和机理的研究受到学术界和工业界的广泛关注,其中对于正极材料性能的改进(如提高容量和循环稳定性差)是锂离子电池的最关键的技术挑战之一。目前高容量正极材料是过渡金属氧化物型,其稳定性主要归因于体相结构稳定性和界面化学稳定性,这些正极材料的过渡金 ...北京大学通知公告 本站小编 Free考研 2020-04-10生命学院赵进东课题组、高宁课题组合作解析丝状蓝细菌中光系统I四聚体超高分辨结构
10月8日,北京大学生命科学学院赵进东院士课题组与高宁教授课题组,以及中国科学院大连化学物理研究所李国辉研究员研究组在NaturePlants发表了题为“StructuralandfunctionalinsightsintothetetramericphotosystemIfromheterocys ...北京大学通知公告 本站小编 Free考研 2020-04-10新材料学院与中科院化学所共同设计并合成具有“无机类苯环”功能结构基元的高性能钠电池材料
锂离子电池已经成功并广泛应用与手机、电脑和电动车上。大规模的电动车动力电池和储能电池应用需要资源丰富和成本低的原料,钠比锂的储量在地球更丰富因而成本更低,因此发展高容量高稳定钠离子电池是当前能源科技研发的前沿。钠离子层状氧化物正极材料以其优越的离子电导率、高比容量和更廉价的原料成本正在成为锂离子正极 ...北京大学通知公告 本站小编 Free考研 2020-04-10新材料学院研发基于图论的结构化学新范式和材料基因组学
在过去十年中,美国和中国政府相继开展了材料基因组计划(美国)和国家材料基因工程重点专项(中国)。材料基因组计划和工程借鉴生命基因计划成功经验,利用高通量的理论计算和实验及数据库的相融合加速新材料的发现和应用,因此构建高质量的材料大数据系统,全自动化地智能识别并处理所有的晶体结构,是该领域亟待攻克的科 ...北京大学通知公告 本站小编 Free考研 2020-04-10生命科学学院高宁研究组与合作者解析人源T细胞受体-共受体复合物结构
8月28日,北京大学生命科学学院高宁课题组与哈尔滨工业大学黄志伟课题组合作在Nature上发表了题为“StructuralbasisofassemblyofthehumanTCR-CD3complex”的研究论文,报道了利用冷冻电镜技术解析的人源T细胞受体-共受体的高分辨结构。T细胞是脊椎动物适应性 ...北京大学通知公告 本站小编 Free考研 2020-04-10人工微结构和介观物理国家重点实验室刘运全教授和龚旗煌院士等在《物理评论快报》发表关于新型阿秒钟实现对量子隧穿时间问题的研究
量子隧穿是微观世界的基本现象,它是指粒子可以像波一样地穿过有阻碍的区域(即势垒),是微观粒子的波粒二象性的一个具体表现。如今,量子隧穿的概念已经渗透到物理学的方方面面,比如广泛使用的扫描隧道电子显微镜、半导体异质结等。然而,关于量子隧穿却有一个基本问题充满着争议,那就是隧穿的过程是否需要时间?如果需 ...北京大学通知公告 本站小编 Free考研 2020-04-10新材料学院在《化学研究述评》发表锂电池层状材料研究进展总结和展望封面文章
作为一种理想的清洁能源,锂离子电池(LIB)长期以来受到人们的广泛关注。尽管LIB已在便携式电子设备、电动汽车等领域有着广泛应用,但其更大规模的应用仍受到能量密度、制造成本和循环寿命等瓶颈问题的限制。LiTMO2(TM=Ni,Mn,Co,orNixMnyCoz,x+y+z=1)材料则是颇具前景的、能 ...北京大学通知公告 本站小编 Free考研 2020-04-10孔道春实验室在染色质结构形成及DNA复制叉稳定性维持的分子机制方面取得重大发现
100年前,研究人员发现染色体上有非常紧密的区域,并提出了异染色质结构这个概念(MontgomeryTH.(1901),Astudyofchromosomesofthegermcellsofmetazoan.TransAmPhilSoc.20:154-136;HeitzE.(1928).Dashet ...北京大学通知公告 本站小编 Free考研 2020-04-10化学学院吴凯课题组在《自然-通讯》发表表面非对称反应研究进展
合成化学和材料科学的快速发展得益于丰富的化学反应“工具箱”。它既包括多种多样的化学反应类型,也包括不断扩充的反应调控方法学——后者对于提高反应效率和精准程度至关重要。一类重要的反应调控方法被称为“非对称反应”,即通过对反应过程的精细控制,从而在同一分子中多个等价的反应活性位点分别实现不同的化学反应。 ...北京大学通知公告 本站小编 Free考研 2020-04-10